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ABSTRACT 

In this study flow around an axial flow fan is investigated by the means of CFD computations using the commercial 

software package, ANSYS Fluent. The rotation speed of the impeller was set to the constant value of n = 2500min-1. 

The results obtained from the computation are validated against those from measurements; good agreements can be 

seen. The effects of two different external disturbances are analysed. First, the fan was place into a uniform stream 

where the free stream velocity is varied between U = 0 and 100 km/h. After that, a computation is carried out for  

U = 0 km/h where the half of the suction side of the fan was covered by a flat plate. The results showed that the fluid 

pressure and the aerodynamic force increases with the free stream velocity. Asymmetric pressure and fluid force 

distribution was identified when suction side of the fan was partially covered. 
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1. INTRODUCTION 

Nowadays, modelling of fluid flow in an axial flow fan is a common engineering problem. Using the 

available commercial software packages this problem can be handled. 

Two types of noise are emitted from the cooling fan of an automotive engine: tonal and broadband noises. 

Many researchers have studied how these kinds of noises can be reduced [1, 2]. Park and Lee [1] 

investigated the source of broadband noise from a shrouded automotive cooling fan using a hybrid 

approach. The calculation of the noise generated by the fan required a large computational domain. A 

hybrid mesh was created on the geometry consisting 5.2 million cells. The turbulent flow around the fan 

was modelled by the k-ω SST turbulence model and the noise was predicted using the generalized acoustic 

analogy of Ffowcs Williams and Hawkings [3]. In order to reduce the computational cost, for first, Park 

and Lee [1] carried out steady state computations. Once the residual errors decreased to the convergence 

criteria, they continued the computations considering unsteady flow field. 

The computational time is greatly increased by modelling the entire fan unit. If the geometrical properties 

of the impeller blades are the same and the spacing is constant, it is possible to examine the flow around 

only one blade section using periodic boundary conditions. Pogorelov et al. [4] used Large Eddy 

Simulation (LES) and investigated the effect of the gap between the rotating and the stationary parts of the 

fan. They found that by reducing the tip-gap width, the amplitude of tip-gap vortex wandering is 

decreasing and the frequencies of the dominant modes are increasing. They also found that tip-gap vortex 

shedding play an important role in the noise generation. 

Lallier-Daniels et al. [2] analysed the acoustic properties of a cooling fan module using Lattice-Boltzmann 

Method (LBM). The results from the CFD computations were compared with their measurement results 

obtained using a microphone placed in front of the fan. The comparison between the numerical and 

experimental results showed good agreements. 

Ambdekar et al. [5] investigated the flow structures in a cooling fan using the commercial software 

package ANSYS Fluent. They investigated the velocity and pressure fields inside the fan, the uniformity of 

flow in the outlet, the separation zones, the possible locations of cavitation and the noise load. 
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In this paper three-dimensional flow around an axial cooling fan is investigated using the commercial CFD 

software package, ANSYS Fluent. The results obtained using the currently applied computational approach 

is validated against measurement results. After the code validation, simulations are carried out using two 

types of external disturbances. First, the axial fan is placed into a uniform flow. The effects of free stream 

velocity ranging between U = 0 and 100 km/h are analysed. After that, with zero free stream velocity U = 0 

km/h, the half of the suction side of the fan is covered using a flat plate. Three components of fluid force 

acting on the blade sections are computed and the pressure distribution on the impeller is shown. 

2. COMPUTATIONAL SETUP 

In this study three-dimensional, incompressible, Newtonian fluid flow around an axial flow fan is modelled 

using the commercial software package ANSYS Fluent. Three components of the Navier-Stokes equations 

and continuity equation are solved. Based on the studies of [5–7], Reynolds stresses are approximated 

using the realizable k-ε turbulence model. The rotating motion of the impeller is modelled using the sliding 

mesh method.  

A schematic diagram of the computational domain is shown in Fig. 1. The axial fan is placed into a channel 

which height, downstream and upstream length and width are set to 0.804 m, 2.349 m, 2.378 m and 1.2 m, 

respectively. A cover (flat plate) is placed on the suction side of the fan which is divided into 13 sub-

surfaces. These wall surfaces can be ‘activated’ or ‘inactivated’ during computations. In case a sub-surface 

is activated, no-slip boundary conditions are satisfied on it, otherwise, air can flow through it.  

Dirichlet-types of boundary conditions are applied for the three velocity components on the solid surfaces 

of the fan and in the inlet cross-section. In the inlet uniform stream is prescribed by giving the free stream 

velocity U. Neumann-types of boundary conditions are used for fluid pressure and for the velocity 

components in the outlet cross-section. 

 

Figure 1. The schematic diagram of the computational domain 
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Figure 2 shows the numerical grid created on the computational domain. It can be seen that the radial cells 

are logarithmically spaced, providing a fine grid scale near the solid bodies and relatively coarse grid in the 

far field. The mesh contains approximately 58 million cells. 

 

 

Figure 2. Mesh 

The governing equations with the boundary conditions are solved using finite volume method. Second 

order upwind scheme was used to discretize the convective terms in the momentum equations. The Semi-

Implicit Method for the Pressure Linked Equations (SIMPLE) scheme is applied for the pressure-velocity 

coupling. 

3. CODE VALIDATION 

Firstly, the results from the applied computational method are validated against experimental results. For 

this investigation the flat plate on the suction side of the axial fan is inactivate and the rotation speed of the 

impeller and the free stream velocity in the inlet cross-section are set to n = 2500 min-1 and U = 0 km/h, 

respectively. For this rotation speed value the revolution time is under trev = 60/2500 = 0.024 s. The 

impeller is turned by 5° in each time step, that is, the time step was chosen to be ∆t = 0.0003s. 

 
(a)       (b) 

Figure 3. Comparison between computational and experimental results  

using the time mean values of u and v velocity components 
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Experiments are carried out using Constant Temperature Anemometry (CTA) technique. During the 

measurements the time series of u and v velocity components are measured at eight distinct points along 

the y axis (shown in Fig. 1), Δz = 0.1 m away from the fan on the pressure side. The sampling frequency 

was set to 1 kHz and 30s measurement time (in each point) was considered. 

In Fig. 3a and b the comparison between the computational and experimental results using the time-mean 

values of u and v velocity components (uTM and vTM) are shown. It can be seen that the agreements are 

relatively good, the data sets are in an acceptable tolerance. 

4. RESULTS AND DISCUSSION 

After the code validation, computations are carried out to investigate the effects of the free stream velocity 

and the covering surface placed on the suction side of the fan. The rotation speed was set to n = 2500 min-1 

similar to that in the validation procedure. During the investigations the three components (in Cartesian 

coordinate system) of the aerodynamic force (Fx, Fy and Fz) acting on the fan blades and the pressure 

distribution on the impeller are investigated. 

4.1. The effects of free stream velocity 

In Fig. 4a and b Fx and Fy aerodynamic force components acting on the blade sections are shown for the 

free stream velocity values of U = 0, 35, 70 and 100 km/h. The identification numbers of each blade are 

shown in Fig. 5. It can be seen that these force components can be either greater than and lower than zero 

for an arbitrary free stream velocity value. In case Fx or Fy is negative the force acts opposite to the rotating 

direction of the impeller, while for Fx > 0 or Fy > 0 the force acts in the direction of rotation. It can also be 

seen that Fx and Fy for U = 70 and 100 km/h increase and decrease at the same locations, so that the force 

components for these two U values are ‘in-phase’. In contrast, the calculated Fx and Fy values for U = 35 

km/h are out of phase with those at U = 70 and 100 km/h. 

In Fig. 4c the aerodynamic force component in the axial direction Fz is shown for the aforementioned free 

stream velocity values. It can be seen that Fz is significantly greater than Fx and Fy which is expected. 

Surprisingly, Fz can also be positive and negative. For positive and negative values the force acts in and 

opposite to the direction of the main stream, respectively. 

In Fig. 5 the pressure distribution on the impeller of the fan is shown for the investigated free stream 

velocity values. It can be seen that the pressure increases with U which can cause increasing aerodynamic 

forces on the blades. This statement is true for U > 35 km/h, while at the range of U < 35 km/h additional 

investigations are required. It is also shown in the figure that the pressure on the pressure side of the fan is 

always lower than that on the suction side which is also expected. 
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(a) (b) 

 
(c) 

Figure 4. Fx (a), Fy (b) and Fz (c) aerodynamic force components acting on the blade sections. 
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    Suction side       Pressure side 

p [Pa] 

 

a) U = 0 km/h 

 
b) U = 35 km/h 

 
c) U = 70 km/h 

 
d) U = 100 km/h 

 

Figure 5. Pressure distribution on the blades for U = 0 km/h (a), 35 km/h (b), 70 km/h (c) and 100 km/h (d) 

4.2. The effects of covering plates 

Computation is also carried out to investigate the effects of covering on the aerodynamic forces acting on 

the blades and pressure distribution on the impeller. In this computation the half of the covering surface is 

‘activated’ and the free stream velocity in the inlet cross section is set to zero.  
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Figure 6 shows Fx, Fy and Fz force components acting on the blades of the fan. In Fig. 7 pressure 

distribution on the impeller of the fan is shown. It is seen in Fig. 7 that blades 2, 3 and 4 are fully covered, 

blade 5 is partially covered and blades 6, 7, 8 and 1 are free of cover. The force component in the axial 

direction Fz is the greatest (see Fig. 6) which agrees with the results of the previous computations. As seen 

in Fig. 6 the forces are higher on those blade sections which are behind the covering plate. This means an 

asymmetric load on the structure which can possibly induce mechanical vibrations of the structures. This 

asymmetry can also be seen in Fig. 7. 

 

 

Figure 6. Fx, Fy and Fz force components for cover 

 

 

Figure 7. Pressure distribution on the blades for cover 
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4. CONCLUSIONS 

In this study fluid flow around an axial cooling fan is investigated by means of numerical simulations using 

the commercial CFD software package, ANSYS Fluent. The rotation speed of the fan was set to a constant 

value of n = 2500 min
-1

. The fan is placed into a uniform stream; the free stream velocity is varied between 

U = 0 and 100 km/h. A covering flat plate is placed on the suction side of the fan which can be ‘activated’ 

(satisfying no-slip boundary conditions on the surface) or ‘inactivated’ (the fluid can flow through it). The 

three components of aerodynamic force are evaluated on the blade sections. The results obtained are 

concluded in the following points: 

- The results from the computational method are validated against experimental results (using CTA 

measurement approach) using the time-mean values of u and v velocity components. The comparison 

between CFD and measurement data showed good agreements; 

- Increasing the free-stream velocity, the fluid forces are showed to increase. Fx and Fy can be either 

positive and negative meaning that the force acts in or opposite to the rotating direction of the 

impeller. Fx and Fy values for U > 35 km/h increase and decrease in the same location, so that these 

data sets are ‘in-phase’. At the range of U < 35 km/h different tendencies can be seen that need 

additional computations. It was shown that axial fluid force components Fz is the highest which can 

also be positive and negative; 

- Asymmetric pressure distribution can be seen on the impeller in case the covering flat plate placed on 

the suction side of the fan is activated. This asymmetry occurs also in the aerodynamic forces; Fx, Fy 

and Fz are higher on those blades which are behind the cover and lower on those blades which are free 

of cover. 
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