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ABSTRACT 

We measured the daily evapotranspiration on a horizontal sub-surface flow constructed wetland in Hódmezővásárhely, 

Hungary. The main focus of our research was the seasonality of evapotranspiration in this CW. We measured the water 

balance of the CW and searched days when no precipitation, no inlet or outlet impacted on the water balance of the 

constructed wetland, only the evapotranspiration. had impact on the water balance. The results show that in spring the 

evapotranspiration rates were between 18-42,6 mm/day, in summer 12,3-42,3 mm/ day and in autumn the values were 

13,6-22,7 mm/day. The highest hourly evapotranspiration was 16,3% of the daily evapotranspiration. This value was 

415 % of the average, hourly hydraulic load that can significantly affects on the effluent concentration. The results also 

show the morning and evening condensation which has two main effects. On the other hand, the water balance of the 

CW is increased, which results the decrease of the concentration of wastewater. 

Keyword: horizontal subsurface flow constructed wetlands, evapotranspiration, tufted sedge, condensation, water 

balance 

1. INTRODUCTION 

Constructed wetlands (CWs), also known as treatment wetlands, are sustainable and efficient solutions 

used around the world to treat wastewater. There are two main types of constructed wetlands, free-surface 

flow systems (FSF-CW), and sub-surface flow systems (SSF-CW). SSF-CWs can be constructed with the 

wastewater flowing either horizontally (HSSF-CWs) or vertically (VSSF-CW) through the substrate that 

supports the growth of plants. 

The two components of evapotranspiration that can negatively affect the water balance of constructed 

wetlands by causing loss of water are the transpiration of plants and the evaporation from the water surface 

and soil [1], [2]. Under warm and windy environmental conditions, evapotranspiration can be high [3], [4], 

[5].  

The rate of evapotranspiration mostly depends on climatic factors, such as precipitation, temperature and 

wind [6], as well as the growth [7] and height of the plants in the system and the density of the leaves [8] 

[9]. Plants also play a key role in determining water loss in a CW [10].  

Pedescoll et al. [11] showed that the evapotranspiration in subsurface flow constructed wetlands was 20–22 

mm/day, the water loss via evapotranspiration was around 44% of the hydraulic load, but there were days 

when it reached 100%. Freedman et al. [12] measured similar values of 20 mm/day but observed 40 

mm/day in certain times of the day. In another study, values of evapotranspiration in HSSF-CWs fluctuated 

between 19.5 and 40 mm/day [13].  

Tuttolomondo et al. [14] measured evapotranspiration in a constructed wetland in Italy and observed that 

on some summer days evapotranspiration reached 25–35 mm/day; this value was 20–30% of the hydraulic 

load. Tanner [15] studied a evapotranspiration rates of a constructed wetland during a hot (30-33 °C) 

summer in New Zealand, the values measured were around 7.1–11.7 mm/day meaning that transpiration 

accounted for 20% of the daily hydraulic load. 
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Milani et al. [16] investigated evapotranspiration rates in twelve pilot-scale horizontal subsurface flow 

constructed wetlands in eastern Sicily in which they had five different species. The results showed that the 

evapotranspiration rates varied between 7,35 to 17,31 mm/ day.  

Queluz et al. [17] had similar values in pilot-scale HSSF-CWs, their results were 4,9 to 20 mm/day, 

nevertheless, they obtained very high results at around 46 mm/day.  They did not find the exact reason for 

this extreme value. 

Yano et al.  [18] studied the influence of the plant growth on the evapotranspiration.  The results showed 

that the evapotranspiration increased the growth of the plants, and that there were weeks when the water 

loss via evapotranspiration increased up to 80 % of the inflow rate. Hamouri et al. [19] measured the water 

loss via evapotranspiration in HSSF-CWs in Marocco. They concluded that the water loss amounted to 11-

17 % of the inflow rate. 

Chazarenc et al. [20] estimated evapotranspiration using a 1 m
2 

pilot-scale constructed wetland planted 

with Common reed (Phragmites australis). The evapotranspiration water loss accounted for 13–40% of the 

hydraulic load. The results showed that in constructed wetlands evapotranspiration increased hydraulic 

retention time and decreased dispersion [20].  

As a result of evapotranspiration, concentration of solutes increases in constructed wetlands [21]. The 

highest evapotranspiration rates in a HSSF-CW were found to occur at midday, at around 12:00 to 13:00 

[22], [23].  

Bialowiec et al. [9] measured the pollutant removal efficiency of constructed wetlands under different 

evapotranspiration rates and concluded that higher evapotranspiration caused higher effluent 

concentrations. In another study of the relationship between evapotranspiration and removal efficiency, the 

results showed that increased rate of evapotranspiration positively affected outflow Biochemical Oxygen 

Demand (BOD5) and Chemical Oxygen Demand (COD) concentrations [24].  

The above findings show that evapotranspiration indirectly affects effluent water quality, thus it is 

imperative to obtain in-depth knowledge about evapotranspiration in subsurface flow constructed wetlands. 

Among the many studies on water management processes of surface flow constructed wetlands [25] [26] 

[27], only a few contain detailed water balance analysis of subsurface flow constructed wetlands [20]. 

These studies are not enough detailed about these viewpoints: 

- Don’t show any information about morning and evening condensation processes. 

- Don’t show enough detailed analysis of separation between daytime and night time periods.  

- Don’t show enough detailed analysis of changing the hourly evaporation rates. 

These detailed information are very important because the effluent concentration of wastewater can be 

changed dynamically in a day by the highly changing evaporation rates, and condensation processes.  

In this study, our aims are to estimate the answers to these interesting scientific viewpoints.  Otherwise, we 

don’t know so detailed analysis of CW’s evaporation processes from the Middle-European region.   

2. MATERIALS AND METHODS 

2.1. Study site 

Our study site was a subsurface flow constructed wetland treatment plant near Hódmezővásárhely 

(Hungary). This constructed wetland treats 1-1.5 m
3
 of wastewater per day from a dairy farm. The 

technology consists of a septic tank, a pump system, VSSF-CW planted with common reed (Pragmites 

Australis), HSSF-CW planted with Tufted sedge (Carex elata All.), a polishing pond and a trickling system 

planted with poplar trees (Populus spp).  This study focuses exclusively on HSSF-CW. 

2.2. Species description 

Tufted sedge is a widespread species found all over Europe, except for the Mediterranean. This species is 

native to Hungary and is generally abundant throughout much of its Central European range 
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(http://www.iucnredlist.org). It can be found in shallow water, preferring oligotrophic to eutrophic and 

often calcareous freshwater habitats, and in seasonally flooded areas. The primary life form of the species 

is perennial and aquatic. Tufted sedge grows as a tussock-forming graminoid, often forming extensive 

stands. Being a Eurasian temperate flora element, it presents broad ecological tolerance to light as well as 

the moisture, nitrogen and salt content of the soil. It can be up to 40-120 cm tall, has a triangular shape and 

is very rough at the top (https://www.brc.ac.uk/plantatlas). The cross section of the leaf is M-shaped, the 

blade is 2-5 mm wide, greyish-green, and the underside of the leaf is dull. Tufted sedge is a hypostomatic 

plant, which means that the stomatal openings for gas exchange are on the underside of the leaf [28]. 

Stomatal openings are also generally found on the leafy floral shoots (personal observation). Mostly in 

summer, drained soil conditions can strongly decrease the stomatal conductance-induced transpiration rate 

[29]. 

2.3. Measurement method 

For investigation of the daily fluctuation, we were looking for days characterized by: 

- No inflow and outflow 

- No precipitation 

- Significant decrease in daily water levels 

Apparently, the change in water level on these days depends only on the extent of evapotranspiration. A 

significant amount of daily water level change was needed to eliminate measurement inaccuracies in the 

water pressure transmitters. Water level observations were recorded at 10-s intervals on the test days to an 

accuracy of 0.1 mm (± measurement error). We found 16 days to test. Three water level pressure 

transmitters were installed in the object under investigation.  

Perforated pipes were placed vertically in the CW. The level transmitters were placed in these pipes, and 

all three series of data were used and the values measured were averaged by the 3 pressure transmitters so 

that we could eliminate measurement errors and thus accurately track hourly changes. 

3. RESULTS AND DISCUSSION 

The measurement data values provided by pressure transmitters and the average values generated from 

them, and  figure 1. below, shows data for day   2012-05-24. 

 

Figure 1.: Registered water levels 
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The significant difference between the water level values is due to the different depths of the transmitters.  

For the purposes of this study, the position of the transmitters is not relevant. From our viewpoint, only the 

degree of water level change is important. It can be clearly seen from all 4 functions shown that during the 

night period the water level change is lower than during the day. This can be explained by increased 

evapotranspiration during the day. 

 

 

Figure 2: Evolution of average water level on the date of 2011-08-29. 

 

Figure 3: Evolution of average water level on the date of 2012-05-25 

We have produced values of water level change as illustrated by the following figures. The two figures 
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350.0

355.0

360.0

365.0

370.0

375.0

380.0

385.0

0:00:00 4:48:00 9:36:00 14:24:00 19:12:00 24:00:00

W
at

er
 le

ve
l (

m
m

) 

Time (hh-mm-ss) 

290.0

295.0

300.0

305.0

310.0

315.0

320.0

325.0

0:00:00 4:48:00 9:36:00 14:24:00 19:12:00 24:00:00

W
at

er
 le

ve
l (

m
m

) 

Time (hh-mm-ss) 

https://doi.org/10.14232/analecta.2020.2.1-12


Vol. 14, No. 2 2020 

 

DOI: https://doi.org/10.14232/analecta.2020.2.1-12 

 

5 

 

 
Figure 4.: Hourly changes in water level during the day 

 

Figure 5.:Hourly changes in water level during the day 

 

Figure 6.:Hourly changes in water level during the day 
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Figure 7.:Hourly changes in water level during the day 

 

Figure 8: Hourly changes in water level during the day 
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Table 1: The data for measured days 

  

Sunrise Sunset 

Daily 

hour 

(hh:mm) 

Nightly 

hour 

(hh:mm) 

Average 

daily 

temperature 

(C°) 

Water 

level 

changes 

at day 

(mm) 

Water 

level 

changes 

at night 

(mm) 

Daily 

water 

level 

changes 

(mm) 

2011.08.11 5:27 20:00 14:33 9:27 17 9,0 3,3 12,3 

2011.08.27 5:49 19:31 13:42 10:18 26 30,3 12,0 42,3 

2011.08.28 5:50 19:30 13:40 10:20 22 20,0 4,3 24,3 

2011 08 29 5:53 19:26 13:29 10:31 22 22 -0,3 21,7 

2011 08 30 5:54 19:24 13:30 10:30 23 19,7 2 21,7 

2011 08 31 5:55 19:22 13:27 10:33 21 14 3,7 17,7 

2011 09 11 6:09 19:01 12:52 11:08 24 23,7 -1 22,7 

2011 09 25 6:27 18:33 12:05 11:55 16 14,4 -0,8 13,6 

2011 09 27 6:29 18:29 12:00 12:00 18 14,4 -0,7 13,7 

2011 09 29 6:32 18:25 11:53 12:07 17 12,7 1 13,7 

2012 05 18 5:02 20:08 15:07 8:53 14 19,7 -1,7 18 

2012 05 24 4:56 20:15 15:19 8:41 20 38,6 4 42,6 

2012 05 25 4:55 20:16 15:21 8:39 20 28,3 2,1 30,4 

2012 05 27 4:54 20:17 15:23 8:37 17 25 2 27 

2012 05 28 4:53 20:18 15:25 8:35 17 28 0 28 

2012 05 29 4:52 20:19 15:27 8:33 18 26 -2 24 

 

Table 1. shows the data for each day, the day/night ratio, and the daytime and nighttime water level 

changes. There are days when the morning and evening condensation causes the water level to be negative. 

The smallest change in water level was 13.6 and the biggest was 42.6 mm. Average daily temperatures on 

spring days varied between 14 to 20 ° C, on summer days between 17 to 26 ° C and on autumn days 

between 16 to 24 ° C. 

Table 2.:  Daily, daytime and nighttime evapotranspiration values for days measured 

Date 
Evapotranspira

tion (mm/day) 

Evapotranspiration 

and maximum 

hydraulic loading 

rate ratio (%) 

Evapotranspiration 

at day time (%) 

Evapotranspirati

on at night time 

(%) 

Daily 

condensation 

and maximum 

hydraulic load 

rate ratio (%) 

2011 08 11 12,3 30,8 73,0 27,0 0,0 

2011 08 27 42,3 105,8 71,7 28,3 0,0 

2011 08 28 24,3 60,8 82,2 17,8 1,8 
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2011 08 29 21,7 54,3 100 0 8,3 

2011 08 30 21,7 54,3 90,8 9,2 5,8 

2011 08 31 17,7 44,3 79,1 20,9 0,8 

2011 09 11 22,7 56,8 100 0 5,8 

2011 09 25 13,6 34,0 100 0 5,8 

2011 09 27 13,7 34,3 100 0 5,8 

2011 09 29 13,7 34,3 92,7 7,3 0,8 

2012 05 18 18,0 45,0 100 0 4,3 

2012 05 24 42,6 106,5 90,6 9,4 0,0 

2012 05 25 30,4 76,0 93,1 6,9 0,0 

2012 05 27 27,0 67,5 92,6 7,4 3,3 

2012 05 28 28,0 70,0 100 0 3,3 

2012 05 29 24,0 60,0 100 0 10,0 

 

The daily evapotranspiration values and the degree of condensation were compared to the maximum 

hydraulic load, which is 40 mm / day for the horizontal sub-surface flow constructed wetlands, and the 

daytime and nighttime evapotranspiration were separated. The results of the calculations summarized in 

Table 2., lead to the following conclusions: 

- On the days under investigation, 71.7-93.1% of the total daily amount evaporated during the 

daytime hours. It follows that the concentration processes caused by evapotranspiration 

were 4-10 times more potent during daytime than nighttime in this constructed wetland.  

- The evapotranspiration at night is significant, as there are some days when the total, daily 

water loss via evapotranspiration is 21.0-28.0 % of the total daily water loss, these values 

are similar to Dittrich et al. [30]. 

- There were days when the condensation values were high, consequently, the daytime and 

nighttime ratio could not be divided. 

- During the spring, the estimated evapotranspiration is 18.0-42.6 mm/day, which is 45.0 -

106.5 % of the maximum hydraulic load.  

- During the summer, the estimated evapotranspiration is 12.3-42.3 mm/day, which is 30.8-

105.8 % of the maximum hydraulic load.  

- The estimated evapotranspiration in autumn is 13.6-22.7 mm/day, which is 34.0-56.8 % of 

the maximum hydraulic load.  

- Days when there was measurable condensation in the constructed wetland, the value varied 

between 1.8 to 10.0 % of the daily maximum hydraulic load, this phenomenon was found to 

decrease the concentration in the CW, especially after sunrise. 
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Figure 9.: Changes in the mean, minimum and maximum hourly evapotranspiration on spring days, expressed as a percentage of 

daily evapotranspiration  

 

Figure 10.: Changes in the mean, minimum and maximum hourly evapotranspiration on summer days, expressed as a percentage 

of daily evapotranspiration 

 

Figure 11.: Changes in the mean, minimum and maximum hourly evapotranspiration on autumn days, expressed as a percentage 

of daily evapotranspiration  
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decreases due to the morning condensation and then increases after sunrise and reaches the mean maximum 

at 12 to 13 pm. and then gradually decrease. These results were similar to Galvao et al. [23]. There are 
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days when the maximum amount of evapotranspiration is in the morning and then a gradual decrease is 

observable. 

The Figure 9. shows that the peak spring hourly evapotranspiration was around 16.3 % of the daily 

evapotranspiration, this value was around 15.8 % in summer and 16.2 % in autumn. Estimating the 

maximum spring hourly evapotranspiration from 42.6 mm/day, this value is 6.94 mm/h, 415 % of the 

average hourly hydraulic load (1.7 mm/h) of the cw. In summer and autumn these values are 229 % and 

150 % of the average hourly hydraulic load of the CW. From This result led to the conclusion that the 

concentration processes occurring during the spring and summer can be extremely significant. 

4. CONCLUSIONS 

We measured the hourly, daily and seasonal evapotranspiration of a horizontal sub-surface flow 

constructed wetland for four months. We found 16 days when there was no precipitation and there was no 

inlet or outlet affecting this constructed wetland, meaning that the only effect upon the water balance of 

this CW was the evapotranspiration. 

On the days investigated, 71.7-93.1% of the total daily amount evaporated during the daytime hours. It 

follows that the concentration processes caused by evapotranspiration were 4-10 times more potent during 

daytime than nighttime in this constructed wetland. The evapotranspiration at night is significant, as there 

are some days when the total daily water loss via evapotranspiration is 21-28 % of the total daily water 

loss.  

We measured the evapotranspiration under local climatic conditions: in springtime the values were 

between 18.0-42.6 mm/day which amounted to 45.0-106.5% of the maximum hydraulic load, in 

summertime 12.3-42.3 mm/day; these values are similar to results of Freedman et al. [12]. The values were 

30.8-105.8% of the maximum hydraulic load. The values were 13.6-22.7 mm/day in autumn, which is 

34.0-56.8% of the maximum hydraulic load. These values are similar to those of Dittrich et al. [30] 

There were days when the morning and evening condensation were very high causing  

significant increase in water level. This has two consequences, on the one hand, condensed vapor increases 

the water level supplying the constructed wetland, on the other hand, due to humidity of around 100%, 

evapotranspiration is slightly reduced. There were some days when during the hour following the morning 

condensation the transmitters registered the highest hourly water loss. Further research is needed to explore 

this causes of this phenomenon.  

There was a day in springtime when the peak hourly evapotranspiration was around 16% of the daily 

evapotranspiration. This value was 415 % of the average hourly hydraulic load of the CW. These values 

were 229 % and 150 % in summer and autumn. As a result, the concentration processes occurring during 

the summer may be extremely significant.  

Our research results showed the daily evapotranspiration rates in three different seasons in horizontal 

subsurface constructed wetland, and the effect of the morning and evening condensation in Central Eastern 

European region. 

In the future, we plan to conduct 24-hour on-site measurements at the same field site in order to clarify the 

evaporation transpiration ratio as a function of local climatic conditions. Based on these measurements, we 

expect to develop an environment-calibrated engineering model to better estimate system-level 

evapotranspiration processes and mechanisms.  
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