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ABSTRACT 

Real beams have non-ideal boundary conditions and it is necessary to use new models to determine the real modal 

parameters. Models that use ideal conditions do not fully reflect reality and can lead to unsatisfactory description of the 

dynamic behavior. The hinged – hinged boundary conditions, which is in the focus of the paper, are not analyzed as a 

single beam, but as a continuous beam with three spans, free at the ends. The continuous beam with three spans is 

analyzed for cases in which the intermediate supports can occupy any position along the length of the beam, by an 

analytical solution of the problem, with the example of cases when the intermediate supports are located very close at 

the free ends of the continuous beam, thus simulating the real case for an hinged beam at both ends; the situation in 

which the intermediate supports are very close to one of the ends of the beam, thus simulating the real case of the 

clamped beam, with an imperfect clamped end; and the situation in which the intermediate supports are very close 

located anywhere on the beam length, thus simulating the hypothetic case with a continuous beam free at the ends and 

fix on the hinged supports. The analytic results are compared with numerical results by using finite elements method. 

Keywords: natural frequency, boundary conditions, dynamic behavior 

1. INTRODUCTION 

Measuring natural frequencies requires the use of relatively inexpensive and very robust instruments [1, 2]. 

The determination of natural frequencies are easy to calculate both by using analytical models and by using 

numerical methods. 

However, the precise calculation of the natural frequencies is significantly influenced by the correct 

positioning of the supports, respectively by the correct choice of the boundary conditions [3]. 

For example, the analytical calculation for a simple supported beam involves positioning the supports 

exactly at the ends of the beam, but in the real case, the positioning of these supports is very close to the 

ends of the beam, which requires treating the problem as a continuous beam with three openings. 

Complex studies on the calculation of natural frequencies and modal shapes of continuous beams can be 

found in [4]  and [5]. 

For this reason, the paper focuses on the analysis of natural frequencies and percentage deviations by 

applying the ideal boundary conditions and considering the imperfect boundary conditions, by moving the 

supports by 1%, 2% of the beam length. 

2. MATERIALS AND METHODS 

2.1. Analytical approach 

It will be considered a continuous beam with three openings supported with two intermediate hinges and 

free at the ends. 

The lengths of the spans are denoted (Fig. 1) with l1, l2 and l3 and the sum of the lengths are equal to one, 

thus: l1 + l2 + l3 = 1. 

Using Euler-Bernoulli theory for each characteristic point on the beam (1, 2, 3, 4), the following boundary 

conditions can be written: 
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Figure 1. Continuous beam with three spans, free at the ends. 
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where: 

𝑊𝑖(𝑥𝑖) = 𝐴𝑖𝑠𝑖𝑛(𝑎𝑛𝑥𝑖) + 𝐵𝑖𝑐𝑜𝑠(𝑎𝑛𝑥𝑖) + 𝐶𝑖𝑠𝑖𝑛ℎ(𝑎𝑛𝑥𝑖) + 𝐷𝑖𝑐𝑜𝑠ℎ(𝑎𝑛𝑥𝑖) 
 is the normal mode shape of the 

span; 

i = 1, 2, 3 represents the number of spans; 

n is the n
th

 vibration mode number; 

Ai, Bi, Ci, Di are the integration coefficients; 

𝑥1 ∈ [0, 𝑙1], 𝑥2 ∈ [0, 𝑙2], 𝑥3 ∈ [0, 𝑙3]; 
an - the eigenvalues, obtained as solutions of the characteristic equation: 
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(3) 

By knowing the eigenvalues, the natural frequencies for the continuous beam with three openings can be 

calculated using the relation: 
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𝑓𝑛 =
𝑎𝑛
2

2𝜋
√
𝐸 ∙ 𝐼

𝑚 ∙ 𝐿4
 (4) 

  

where: 

fn [Hz] is the natural frequency; 

E [N/m
2
] is the elasticity modulus; 

I [m
4
] is the moment of inertia; 

m [kg] is the beam mass; 

L [m] is the beam length. 

In conclusion, in order to calculate the natural frequencies, we must obtain our own values with relation 

(2), to know the material from which the continuous beam is made and its geometry. 

For this, it will be considered the beam made of steel with a density  = 7800 kg/m
3
 and E = 2.1∙10

11
 N/m

2
, 

having length L =1 m. 

The beam is considered to have a constant cross section, a rectangular shape with a width of b = 0,05 m 

and a thickness of h = 0,005 m. 

2.2. Numerical approach 

The validation of the results obtained by the analytical method was done using FEM analysis. 

The beam described in the previous chapter was analyzed for different locations of the intermediate 

supports. 

For the mesh of the 3D model, finite elements with an average size of 1 mm were used, and the 

intermediate supports are frictionless hinges located in the neutral axis of the beam. 

For l1 = l2 = l3 = L/3, the eigenvalues (an) obtained with relation (2) and the natural frequencies for the first 

n = 6 vibration modes calculated analytically (fn_a) and obtained by FEM (fFEM) are presented in Tab. 1. 

Table 1. The first 6 natural frequencies calculated analytically and obtained by FEM 

n 1 2 3 4 5 6 

an 4.237 4.947 10.732 12.827 14.118 20.104 

fn_a [Hz] 21.401 29.168 137.295 196.111 237.594 481.771 

fFEM [Hz] 21.720 29.474 137.960 196.870 239.390 483.830 

 [%] 1.492 1.050 0.484 0.387 0.756 0.427 

 

Comparing the results obtained for the natural frequencies, presented in table 1, it can be seen that the error 

 [%] between the two methods is below 1.5% for vibration modes 1 and 2, respectively below 1% for the 

other vibration modes. 

3. RESULTS 

The first particular case considered is that in which the intermediate supports are located very close to the 

free ends of the continuous beam, thus simulating the real case of a simply supported beam, with hinges at 

the ends. 

The analyzed cases took into account the values of natural frequencies calculated analytically, for l1 = l3 = 

0.02 m; l1 = 0.01 m, l3 = 0.02 m; l1 = l3 = 0.01 m and their comparison with the natural frequencies 

obtained for the case of the simply supported beam (L = 1) and percentage deviations from them. 

The results are presented in Tab. 2 

The percentage deviations are shown in Fig. 2. 
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Table 2. Natural frequencies and percentage deviations for a simple supported beam with imperfect boundary conditions 

 n 1 2 3 4 5 6 

L = 1 m fn_a [Hz] 11.764 47.057 105.878 188.227 294.104 423.510 

l1 = 0.02 fn_a [Hz] 12.764 51.048 114.823 204.044 318.647 458.546 

l3 = 0.02  [%] 8.500 8.481 8.449 8.403 8.345 8.273 

l1 = 0.01 fn_a [Hz] 12.503 50.006 112.495 199.946 312.323 449.582 

l3 = 0.02  [%] 6.278 6.267 6.250 6.226 6.195 6.156 

l1 = 0.01 fn_a [Hz] 12.249 48.996 110.236 195.966 306.178 440.862 

l3 = 0.01  [%] 4.123 4.120 4.117 4.112 4.105 4.097 

 

 

Figure 2. Percentage deviations for the case of the simply supported beam with imperfect boundary conditions. 

The second particular case considered is that in which the intermediate supports are located very close to 

the left free end of the continuous beam, thus simulating the case of a imperfect clamped – free beam. 

The analyzed cases took into account the values of natural frequencies calculated both analytically and 

obtained by FEM, for l1 = l2 = 0.02 m;l1 = 0.02 m, l2 = 0.01 m; l1 = 0.01 m, l2 = 0.02 m; l1 = l2 = 0.01 m and 

their comparison with the natural frequencies obtained for the ideal case (L = 1) of the clamped– free 

beam. 

The results are presented in Table 3and the percentage deviations are shown in figure 3. 

Table 3. Natural frequencies and percentage deviations for a clamped - free beam with imperfect boundary conditions 

 n 1 2 3 4 5 6 

L = 1 m fn_a [Hz] 4.191 26.264 73.541 144.110 238.225 355.866 

l1 = 0.02 fn_a [Hz] 4.486 28.119 78.757 154.374 255.258 381.408 

l2 = 0.02  [%] 7.029 7.063 7.093 7.122 7.150 7.177 

l1 = 0.02 fn_a [Hz] 4.424 27.726 77.639 152.153 251.537 375.779 

l2 = 0.01  [%] 5.558 5.566 5.574 5.581 5.588 5.595 

l1 = 0.01 fn_a [Hz] 4.394 27.546 77.151 151.226 250.052 373.628 

l2 = 0.02  [%] 4.849 4.881 4.909 4.937 4.965 4.991 

l1 = 0.01 fn_a [Hz] 4.334 27.165 76.068 149.074 246.446 368.172 

l2 = 0.01  [%] 3.422 3.430 3.437 3.444 3.451 3.458 
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Figure 3. Percentage deviations for the case of the clamped-free beam with imperfect boundary conditions. 

The third particular case considered is that in which the intermediate supports are located very close on the 

continuous beam, thus simulating the hypothetic case of a free – clamped – free continuous beam. 

The analyzed cases took into account the values of natural frequencies calculated both analytically and 

obtained by FEM, for l1 = 0.20 m and l2 = 0.02 m. 

The results are presented in Tab. 4. 

Table 4. Natural frequencies and percentage deviations when the intermediate supports are very close on the continuous beam 

 n 1 2 3 4 5 6 

 an 2.384 5.969 9.086 9.997 13.991 17.990 

l1 = 0.20 fn_a [Hz] 6.774 42.465 98.393 119.128 233.320 385.751 

l2 = 0.02 fFEM [Hz] 6.796 42.589 99.571 119.400 233.930 386.840 

  [%] 0.329 0.293 1.197 0.229 0.262 0.282 

 

A comparison of the vibration modes between the analytical method and the FEM method, for l1= 0.20 m 

andl2 = 0.02 m, is illustrated in Fig. 4. 

4. CONCLUSIONS 

In this paper we have applied three cases for which imperfect contour conditions generate errors in the 

calculation of natural frequencies for simple structures. 

Tab. 1 and 4 show that, regardless of the method applied, the analytical method and the numerical method, 

respectively, when calculating the natural frequencies, approximately the same values are obtained for the 

continuous beam with three openings. The errors obtained by the two calculation methods are below 1%, 

except for modes 1 and 2 for the case when the intermediate supports are positioned equidistant from the 

ends of the bar, respectively for mode three (Tab 4) in case of simulating the imperfect stiffness, but for 

this, in this case, the shape of the vibration modes obtained by the two methods has the same shape. 

In the case of simply supported beams, a displacement of the supports towards the ends of the beam by 2% 

produces deviations of the natural frequencies of more than 8% from the case when the supports are 

positioned at the ends of the beam,the precision deviation decreases to about 4% for the displacement of 

the supports by 1% with respect to the ends of the beam. 

In the case of the imperfectly clamped-free beam (Tab. 3), the positioning of the intermediate supports with 

2% - 4% produces deviations in the calculation of the own frequencies of 3% - 7%. 

Regardless of the analyzed cases, for the first 6 analyzed vibration modes, the deviations have 

approximately the same value (Fig. 2 and 3). 
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Figure 4. A comparison for the six vibration modes for l1 = 0.20 and l2 = 0.02 obtained by analytical (left) and numerical method 

(right). 

In conclusion, for real cases, small deviations of the position of the beam supports from the ends, or an 

imperfect fixation of the beam lead to significant deviations of the natural frequencies. It is important that, 

when calculating the natural frequencies for real beams, we take into account the imperfections of the 

positioning of the supports. 
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