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Abstract 

Classification of multispectral optical satellite data using machine learning techniques to derive land use/land cover thematic data is 

important for many applications. Comparing the latest algorithms, our research aims to determine the best option to classify land 

use/land cover with special focus on temporary inundated land in a flat area in the south of Hungary. These inundations disrupt 

agricultural practices and can cause large financial loss. Sentinel 2 data with a high temporal and medium spatial resolution is classified 

using open source implementations of a random forest, support vector machine and an artificial neural network. Each classification 

model is applied to the same data set and the results are compared qualitatively and quantitatively. The accuracy of the results is high 

for all methods and does not show large overall differences. A quantitative spatial comparison demonstrates that the neural network 

gives the best results, but that all models are strongly influenced by atmospheric disturbances in the image.  
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INTRODUCTION 

Accurate data about land use/land cover (LULC) of our 

surroundings continues to be important information for 

many applications like the monitoring and management 

of natural resources, development strategies, and 

global change studies. LULC changes due to changes 

in for example biological diversity, climate and 

terrestrial ecosystems, but are also drivers of change 

for these systems (Baamonde et al., 2019; 

Chatziantoniou et al., 2017). Satellite data 

classification for mapping of LULC is a common 

approach. Automatic classification of LULC with high 

accuracy based on medium resolution optical satellite 

imagery has been a challenge for decades. In earlier 

days, spatial and temporal resolution of the input data 

were limiting factors for accurate monitoring of LULC 

change. With the appearance of global medium to high 

resolution multispectral satellite data with a temporal 

resolution of just several days, in many situations input 

data for LULC change studies is available in 

abundance, even in situations where the phenomena 

change quickly. Advanced algorithms to process and 

classify large amounts of data can be used to produce 

accurate thematic maps over large areas and in a timely 

manner.  

Supervised algorithms are a common approach to 

extract thematic information from multispectral satellite 

images. This research applied different nonparametric, 

machine learning algorithms for classification, namely 

support vector machine (SVM), random forest (RF) and 

deep artificial neural network (ANN).  

Random Forest has been developed rapidly and has 

been widely used in many fields such as medicine, 

economics, and geography during the past twenty years. 

Breiman (2001) proposed Random Forest, which changes 

the way the classification or regression tree is constructed. 

It is an ensemble classification method consisting of many 

decision tree classification models (Jin et al., 2018). The RF 

algorithm exhibits good robustness compared to other 

traditional methods in the classification of a remote sensing 

image, because it requires fewer parameters, minimal 

manual intervention, and yields high classification 

accuracy; it can also manage high-dimensional data and 

obtain classification results rapidly (Ming et al., 2016). 

SVM employs optimization algorithms to locate the 

optimal boundaries between classes. Statistically, the 

optimal boundaries (hyperplanes) should be generalized to 

unseen samples with least errors among all possible 

boundaries separating the classes, therefore minimizing the 

confusion between classes (Huang et al. 2002). SVM were 

originally designed as a binary linear classifier, which 

assumes two linearly separable classes to be partitioned. 

SVM are further extended to deal with non-linear 

classification by using a non-linear kernel function to 

replace the inner product of optimal hyperplane. Moreover, 

SVM have been used for multi-class mapping through 

reducing the multi-class problem into a set of binary 

problems so that the basic SVM principles can be still 

applied (Shi and Yang, 2015). SVM and RF are able to deal 

with unbalanced data. Therefore, SVM and RF are 

becoming increasingly popular in image classification 

studies (Thanh and Kappas, 2018; Gudmann et al., 2019). 

In the 2000-s, (deep) neural networks started to make their 
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comeback due to the increased availability of data, 

optimization of the training algorithms and network 

architectures, and improvements of hardware, mainly the 

availability of affordable GPUs (Zhu et al., 2017). 

Recently, this development was combined with easier 

access to the algorithms via open source machine learning 

libraries, like scikit-learn, Pytorch and Keras-Tensorflow 

(Pedregosa et al., 2011; Paszke et al., 2019; Chollet, 2015; 

Abadi et al., 2015). Using open source programming 

language Python, these libraries can be used in 

combination with scientific data processing libraries like 

pandas, numpy, matplotlib and gdal.  

This research aims to classify LULC based on a 

Sentinel 2 satellite image with special focus on inland 

excess water (IEW). This is a type of inundation that 

occurs in regions with very low relief intensity, where 

large areas get flooded due to a combination of a surplus 

of water, and limited infiltration and evaporation, or due 

to upwelling of groundwater. Due to its geographical 

characteristics the Great Hungarian Plain is particularly 

vulnerable to this phenomenon. IEW mostly occurs in 

agricultural areas where it results in reduced production 

and financial loss. Long term inundations cause reduced 

quality of agricultural soil (Szatmári and Van Leeuwen, 

2013). Quite some earlier research has been published 

using traditional and more novel algorithms to extract 

inland excess water inundations from satellite data. 

Maximum likelihood classification was applied to 

identify IEW by Rakonczai et al. (2001) and Van 

Leeuwen and Tobak (2014). Szántó et al. (2008) applied 

unsupervised classification with a self-organising map to 

identify IEW. Mucsi and Henits (2010) applied spectral 

mixture analysis in a subset of our research area but with 

different classes. Van Leeuwen et al. (2012) applied a 

small feed forward multilayer perceptron to detect inland 

excess water on a mosaic of aerial photographs, spectral 

angle mapping was applied to hyperspectral data by 

Csendes and Mucsi (2017), Balázs et al (2018) used 

Random forest and SVM and received overall accuracies 

of over 90% while classifying PCA data extracted from 

Landsat 7 data. Other methods to extract water from 

medium resolution satellite data have been based on 

various indices (Lacaux et al., 2007; Feyisa et al., 2014). 

Szantoi et al. (2015) presents a comparison between 

maximum likelihood, decision tree and feed forward 

multilayer perceptron algorithms to classify different 

types of grass in a wetland area. Our research compares 

the results of SVM, RF and a deep ANN to detect LULC 

classes with inland excess water represented by two water 

classes. The accuracy of the results is statistically 

compared using overall accuracy and Cohen's Kappa.  

DATA AND STUDY AREA 

The research is focused on an area in the south of the 

Great Hungarian Plain that is vulnerable to inland 

excess water (Fig. 1). On average IEW inundations 

occur every two to three years in Hungary. The latest 

IEW period was in 2018, with moderate inundations in 

February and March. A Sentinel 2B Level 2A image 

(Drusch et al., 2012) from 18 March 2018 has been 

selected to test the different algorithms. Sentinel 2 L2A 

images contain Bottom Of Atmosphere (BOA) 

reflectance values stored in 100 x 100 km tiles. Bands 

 

Fig. 1 Sentinel 2 false color composite (RGB843) showing the study area, its location in Hungary and the 34TDS tile in the 

Sentinel 2 tiling grid 
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2-8, 11 and 12 with spatial resolutions of 10 and 20 

meter have been resampled to 10 meter and stacked into 

one composite file with 9 bands. Part of the original 

34TDS tile did not have reflectance information due to 

the diagonal orientation of the satellite path compared 

to the Sentinel 2 tiling grid and was therefore cut off not 

to disturb the classifications. To exclude artifacts due to 

mosaicking, only one Sentinel 2 tile was used for the 

classifications, this way an area of 4900 km2 remained 

to be classified. As usual during IEW periods, the image 

showed clouds and cloud shadows, which have a strong 

disturbing influence on classifications. The land use in 

the area is mainly agricultural, but there are several 

smaller cities and towns. In the north, the area is 

bounded by the Körös river, in the center and northwest 

larger natural wetlands and grasslands can be found 

(Mezősi, 2017). With elevations between 77 m and 105 

m (above Baltic mean sea level) the relief intensity in 

the area is very small. 

METHODS 

Each experiment to classify the satellite image was 

designed in the same way (Fig. 2). First, the sample data 

was split into the three sets. Then, the inputs of the 

training and validation sets were standardized. In the next 

step, a model was defined as described in the next session. 

Several hyperparameters were tested for each model and 

once the optimal hyperparameters were determined, the 

model was trained using these hyperparameters. Then, the 

complete satellite image was imported and converted to a 

large 9-dimensional numpy array. The arrays were split 

into smaller subarrays to reduce memory use. The 

subarrays were sequentially fed to the trained model to 

predict new outputs. These outputs were concatenated to 

form an array with the same number of rows and columns 

as the input satellite image. The output array was then 

converted to a geoTiff file to be evaluated in a geographic 

information system (GIS). In the GIS, the test points were 

used to extract the classes from the model output 

(prediction) and compared to the actual classes 

(reference). Finally, a confusion matrix, overall accuracy 

and Cohen’s Kappa were calculated. 

 

Creation of the training, validation and test data set 

Supervised classification methods require a large set of 

samples of input and output data to train the model to 

recognize the patterns forming the classes in the data set. A 

second data set is needed to define the hyperparameters and 

to validate if the model is not overfitting during the training 

phase. A third data set is used to independently test the 

predictions made using the trained model. To create the 

three datasets, polygons were digitized, by visual inspection 

of the different land cover classes on different RGB 

composites of the Sentinel 2 image. For each polygon, it was 

stored which class it represented. Then, the polygons were 

randomly split into three categories according to a 60/20/20 

ratio and finally, they were converted to points (Fig. 3). Each 

point is a sample from one of eight LULC classes (Table 1). 

 

Fig. 2 Classification methodology 
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Fig. 3 Distribution of test points for each class in the study area 

Table 1 Number of samples per LULC class in the training, 

validation and test sets 

 
LULC class 

Number of samples 

 Training Validation Test 

1 Deep water 1825 1040 1068 

2 Shallow water 846 694 292 

3 Urban 5294 2358 3112 

4 Bare soil 6095 2733 2973 

5 Agricultural land 2958 1597 1881 

6 Grassland 1475 681 847 

7 Forest 2805 2157 1668 

8 Cloud 3793 2127 1585 

 Total 25091 13387 13426 

 

For each of the modelling algorithms, the same training, 

validation and test set was used. Each set was 

standardized by removing the mean and scaling to unit 

variance using Standard Scaler from the Scikit-learn 

library (Pedregosa et al., 2011).  

Modelling 

Three different models have been used to determine the 

best classification result. With the Scikit-learn gridSearch 

function many different hyperparameter combinations 

were evaluated and only results calculated using the 

optimal combinations are presented here. The first 

classification model is the Random Forest method. It was 

determined that the best result was reached with 200 trees 

in the forest and a maximum depth of 20 trees. The second 

method is the Support Vector Machines algorithm. For the 

kernel, a linear and an RBF kernel were tested, and the 

linear kernel showed better results. The regularization 

parameter C was set to 1.0.  

The final model was a sequential deep artificial 

neural network with two hidden layers with 16 and 12 

neurons in each layer built with Keras/Tensorflow (Abadi 

et al., 2015). This neural network is considered a deep 

neural network since it has two hidden layers, contrary to 

shallow neural networks with maximum one hidden layer. 

After each hidden layer, 20% dropout occurred to prevent 

overfitting. ReLu activation functions were used for the 

hidden layers and a softmax function for the output layer. 

The Adam optimization function with a learning rate of 

0.001 was used for training. The ANN was trained with a 

batch size of 32 and 50 epochs on a Graphical processing 

unit (GPU). While training the model, 10-fold cross 

validation was calculated to determine the mean accuracy 

and variance (Chollet, 2015).  

Prediction on the complete image using the trained model 

After each model was trained, it was fed with the complete 

satellite image. Since the image dimension is 7382 x 8921 

x 9 (columns x rows x bands) with 32 bits values, it was 

too large to fit it as a whole to the model. Therefore, after 

converting the image to a 3-dimensional numpy array, it 

was split in equal subarrays with a dimension of more or 

less 1000 x 1000 x 9. Each of the subarrays was then fed 

to the models and the prediction was calculated. The 

resulting predictions were concatenated to the original 

shape of the input numpy array and then the reconstructed 

array was exported to a TIFF image with the same spatial 

extent and coordinate system as the input satellite image. 

Testing 

The classified output image was read into a geographic 

information system (GIS) and at the locations of the 

random test points the classes were extracted. These 

classes were evaluated with the user defined classes at the 

same locations. Finally, a confusion matrix with overall 

accuracy and Cohen’s Kappa were calculated to 

determine the independent validation accuracy 

(Congalton and Green, 2008). 

RESULTS AND DISCUSSION  

Qualitative assessment of the training and validation 

samples 

The results of the predictions have been compared in a 

qualitative as well as quantitative matter. The qualitative 

comparison was performed on the whole image and on 

smaller areas with interesting features. To understand the 

distribution of the training and validation data sets, the 

distributions of the different classes were compared per 

satellite band (Fig. 4). The cloud class is not shown 

because in each band it is well separated from the other 

classes with much higher reflectance values. The training 

and validation samples have been randomly selected from 

all samples, which is reflected by the similarities of the 

patterns shown in both graphs. It can also be seen that the 

variation between the deep and shallow water classes is 

large, compared to urban, bare soil and grass land among 

most bands. Agricultural soil has the largest variation in 

band 6, 7 and 8. Forest has the largest variation in the bands 

with   the longest  wavelengths.   Furthermore,  it   shows 
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Fig. 4 Distribution of reflectance values for each class per band of the Sentinel 2 image for the training (top)  

and the validation set (bottom) 

 

Fig. 5 Classification results for the total area: Sentinel 2 false color composite (RGB843) (upper left), Random forest result (upper 

right), SVM result (lower left), ANN result (lower right) 
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that, as expected, the variance between the reflectance 

values is the lowest in the bands with the shortest, visible 

wavelengths.  

Qualitative comparison of the classification results 

Visual inspection of the classification results shows a 

very similar pattern for all classification methods (Fig. 

5). Large areas with continuous clouds in the north and 

scattered clouds in the center and top part of the images 

can be recognized in each result. Also, the pattern of 

large water bodies and urban centers in the area is 

shown in all three result. The mixture of bare soil and 

agriculture, typical for March in this area, is 

dominating the overall LULC pattern in the 

classifications. Overall, the classification results for 

SVM and ANN are more similar than for Random 

forest. This is confirmed by the total number of pixels 

classified in each class per method (Fig. 6).  

Evaluating a smaller area with a large lake, 

surrounded by a mixture of wetland and grassland 

clearly shows differences between the Random forest, 

Support vector machine and Artificial neural network 

approaches (Fig. 7). The large, shallow lake in the 

south part of the subset is misclassified as urban by the 

RF method, SVM partly identifies the lake, while it is 

properly delineated by the ANN approach. All 

approaches overestimate the amount of urban in the 

area, but RF does this more often than the other 

approaches. Also, in many places, RF identified 

grassland is as scattered water pixels. The 

classification of bare soil and agricultural land is 

similar.  

A subarea with more forests is shown in Figure 8. 

The forests along the river in the center are properly 

delineated by all approaches, but there are large 

differences between the amount of water south of the 

river where large parcels with soil heavily saturated 

with water can be found. ANN and RF classify these 

parcels almost exclusively as shallow water, while 

SVM designated them as forests. Many areas are 

misclassified as urban in the RF classification.  

The third subarea is showing an urban area 

surrounded by a mixture of agricultural land and bare 

soils (Fig. 9). The urban area is classified similarly in 

all three approaches, but the small river and its banks 

flowing through the small city is only shown in the RF 

result. In SVM and ANN only the forest on the 

riverbanks is detected. Overall, the RF method is more 

sensitive to water than the other methods. 

 

Fig. 7 Subset of the classification results with mainly inland 

excess water, wetlands and agriculture: Sentinel 2 false color 

composite (RGB843) (upper left), Random forest result 

(upper right), SVM result (lower left), ANN result (lower 

right) 

 

Fig. 6 Number of pixels per class for each classification method 
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Fig. 8 Subset of the classification results with a mixture of open 

water, inland excess water and saturated soils: Sentinel 2 false 

color composite (RGB843) (upper left), Random forest result 

(upper right), SVM result (lower left), ANN result (lower right). 

 
Fig. 9 Subset of the classification results with mainly urban land 

use and agricultural land and bare soil: Sentinel 2 false color 

composite (RGB843) (upper left), Random forest result (upper 

right), SVM result (lower left), ANN result (lower right). 

The last subarea shows the effect of clouds and cloud 

shadows on the classifications (Fig. 10). In all three 

methods, this causes problems, even though a cloud class 

was added to the training set. The clouds themselves are 

classified properly, although at their boundaries, where 

they are less thick, they cause every method to misclassify 

them as urban. The cloud shadows cause bigger problems. 

Without exception, the shadows are misclassified as deep 

or shallow water due to their darkening effect on the land 

cover. Often bare soil is misclassified as deep water, while 

agricultural land is wrongly identified as shallow water.   

 

Fig. 10 Subset of the classification results with clouds and cloud 

shadows: Sentinel 2 false color composite (RGB843) (upper 

left), Random forest result (upper right), SVM result (lower left), 

ANN result (lower right) 

Quantitative comparison of the classification results 

Apart from the visual comparison between the 

classification results, two quantitative comparisons have 

been performed to evaluate the methods. The first 

comparison provides the average accuracy and its 

variation for each method based on a 10-fold cross 

validation calculated using the validation set. The second 

method is based on the test set that was used to calculate 

the confusion matrix giving the results from the trained 

models and the expected results. Based on the confusion 

matrix, the overall accuracy (OA), User's accuracy, 

producer's accuracy and Cohen’s Kappa were calculated 

(Congalton and Green, 2008).   

The Random Forest method had an average accuracy 

on the cross validation of 0.9275, with a variation of 

0.0381. The confusion matrix is shown in Table 2. The 

urban prediction class contained most misclassified 

pixels, mainly agricultural land, grassland and forest. To  
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a smaller extent, these classes were also classified as deep 

water. The bare soil, grassland and clouds output classes 

never contain wrongly classified pixels.  

Compared to RF, the support vector machine approach 

has a higher average accuracy of 0.9724 with a lower 

variation of 0.0184, while the test results with the 

independent data set are also slightly better (Table 3). Most 

misclassification occurred in the urban class. These are 

mainly agricultural land and grassland, and to a lesser extent 

forest and clouds. Also urban was misclassified as forest and 

grassland as agricultural land. 

Finally, the ANN has a slightly lower average accuracy 

of 0.9628 with a variation of 0.0258. The test results with the 

independent data set is very similar (Table 4). The 

misclassification pattern for ANN is more or less the same as 

for the SVM method, although some forest was also 

misclassified as shallow water. 

All three methods gain very high accuracy 

classification results (above 0.9), with RF having the lowest 

accuracies and SVM having very similar, but slightly better 

results than ANN. Comparing the training times for the three 

algorithms, it is clear that training the SVM model (0.567 

seconds) is much more efficient than the other models (RF: 

18.8 seconds, ANN: 157 seconds). 

Although, in general water can usually be detected with 

high accuracy in multispectral images, in case of the ANN 

model there was a relatively high error due to 

misclassification as forest. This might be caused by the 

forests in shallow water along the Tisza river in the study 

area. RF and SVM did not show this misclassification. Deep 

water was classified almost perfectly by SVM and ANN, but 

RF had more problems with this class, with 

misclassifications in multiple other classes. All three 

classifications show relatively large errors for the urban 

class. The main reason for this might be the mixed pixels in 

the urban class due to the resolution of Sentinel 2 data. 

Agricultural land and grassland are mixed by the SVM and 

ANN classifications which can be explained by thematic 

misclassification of the training samples.  

Misclassifications often happened in areas with 

shadow from clouds. To overcome this problem, many 

methods have been developed, ranging from shadow 

modelling, cloud and shadow masking, to sampling of 

classes in the shadows (Shahtahmassebi et al., 2013; Foga et 

al., 2017). The aim of this research was to evaluate the 

differences between the selected algorithms therefore the 

cloud/shadow problem has been ignored in the calculations. 

The data sets that have been used for training the 

models is relatively small. In the current revolution of deep 

learning the larger the data set, the better for deep neural 

networks. A larger training set may therefore result in higher 

accuracy for the ANN, but of course this will also result in 

longer training times. For the current classifications, the 

accuracy is already well above 0.90, therefore the need for 

higher accuracy is not apparent for the presented LULC 

application with relatively few classes. If the number of 

classes would increase, more training is required and the 

advantage for ANN would be higher (Rai et al., 2020).  

Experiments were executed to automatically extract 

LULC classes from the Corine Land Cover 2018 database 

(CLC 2018) and use these as labels for the training data 

sets. Unfortunately, this method to automatically create a 

larger training data set was not successful because the 

spatial and thematic resolution of CLC2018 compared to 

Sentinel 2 data is too low resulting in many mixed classes 

within one CLC2018 polygon. Training the models with 

these labels caused large errors. The application of other 

land cover data sets with higher resolution, like 

Copernicus High Resolutions layer (Büttner, 2012) or 

National Ecosystem Base map (Tanács et al., 2019) may 

provide better results.  

The classification algorithms were applied to data from 

the Sentinel 2 satellite, but can be applied to any medium 

resolution multispectral satellite data set. 

Table 2 Confusion matrix with the random forest predictions in the columns and the true values (test set) in the rows 

RF 
Deep 

water 

Shallow 

water 
Urban 

Bare  

soil 

Agricul-

tural land 
Grassland Forest Cloud Total Users acc 

Deep water 1067 1 0 0 0 0 0 0 1068 0.9991 

Shallow water 0 291 1 0 0 0 0 0 292 0.9966 

Urban 8 0 3045 0 15 0 44 0 3112 0.9785 

Bare soil 2 0 0 2971 0 0 0 0 2973 0.9993 

Agricultural 

land 
32 0 160 0 1689 0 0 0 1881 0.8979 

Grassland 37 0 157 0 29 624 0 0 847 0.7367 

Forest 44 0 251 0 0 0 1373 0 1668 0.8231 

Cloud 0 0 3 0 0 0 0 1582 1585 0.9981 

Total 1190 292 3617 2971 1733 624 1417 1582 13426  

Prod acc. 0.8966 0.9966 0.8419 1.0000 0.9746 1.0000 0.9689 1.0000   

         OA 0.9416 

         Kappa 0.9299 
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CONCLUSION 

Automatic supervised classification of multispectral 

satellite imagery is required to extract land use / land 

cover data for a wide range of applications. Machine 

learning algorithms are the most promising techniques 

to reach this goal. The field is developing rapidly, and 

new algorithms and implementations are becoming 

available continuously. The application of machine 

learning algorithms in LULC classification can result 

in high quality results, as the classification results of 

this research shows. Each presented methodology has 

an overall accuracy and a Cohen’s Kappa of above 

0.90. The deep water class could be detected almost 

perfectly, while there was some misclassification of the 

shallow water class. Clouds are detected very well, but 

their shadows cause the largest misclassifications. With 

the application of open source machine learning and 

scientific data processing libraries, it becomes 

straightforward to efficiently experiment with different 

algorithms and parameters to determine the optimal 

classification routine for a certain application. 

With improved classification of inland excess water 

inundations based on satellite imagery covering large areas, 

this research supports the operational defense against the 

floods, and helps to understand their development. The 

Table 3 Confusion matrix with the Support Vector Machine predictions in the columns and the true values (test set) in the rows 

SVM 
Deep  

water 

Shallow 

water 
Urban 

Bare  

soil 

Agricul-

tural land 
Grassland Forest Cloud Total Users acc 

Deep water 1066 1 0 0 0 0 1 0 1068 0.9981 

Shallow water 0 289 1 0 0 1 1 0 292 0.9897 

Urban 0 0 3000 0 29 0 83 0 3112 0.9640 

Bare soil 0 0 0 2973 0 0 0 0 2973 1.0000 

Agricultural 

land 
0 0 130 0 1751 0 0 0 1881 0.9309 

Grassland 0 0 71 0 103 673 0 0 847 0.7946 

Forest 0 0 21 0 0 1 1646 0 1668 0.9868 

Cloud 0 0 16 0 0 0 0 1569 1585 0.9899 

Total 1066 290 3239 2973 1883 675 1731 1569 13426  

Prod acc. 1.0000 0.9966 0.9262 1.0000 0.9299 0.9970 0.9509 1.0000   

         OA 0.9658 

         Kappa 0.9591 

Table 4 Confusion matrix with the artificial neural network predictions in the columns and the true values (test set) in the rows 

ANN 
Deep 

water 

Shallow 

water 
Urban 

Bare  

soil 

Agricul-

tural land 
Grassland Forest Cloud Total Users acc 

Deep water 1065 3 0 0 0 0 0 0 1068 0.9972 

Shallow water 0 291 1 0 0 0 0 0 292 0.9966 

Urban 0 0 2953 3 69 0 87 0 3112 0.9489 

Bare soil 0 0 0 2973 0 0 0 0 2973 1.0000 

Agricultural 

land 
0 0 110 0 1771 0 0 0 1881 0.9415 

Grassland 0 6 45 0 121 675 0 0 847 0.7969 

Forest 2 37 28 0 0 0 1601 0 1668 0.9598 

Cloud 0 0 3 0 0 0 0 1582 1585 0.9981 

Total 1067 337 3140 2976 1961 675 1688 1582 13426  

Prod acc. 0.9981 0.8635 0.9404 0.9990 0.9031 1.0000 0.9485 1.0000   

         OA 0.9616 

         Kappa 0.9542 
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inland excess water maps can be used as input for scientific 

study of the phenomenon and to support sustainable water 

management.  
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