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Abstract 

The Mine Waste Directive (2006/21/EC) requires the risk-based inventory of all mine waste sites in Europe. The geochemical docu-

mentation concerning inert classification and ranking of the mine wastes requires specific field study and laboratory testing and 

analyses of waste material to assess the Acid Mine Drainage potential and toxic element mobility. The procedure applied in this 

study used a multi-level decision support scheme for the inert classification of waste rock material including: 1) expert judgment, 2) 

data review, 3) representative field sampling and laboratory analysis and testing of rock formations listed in the National Inert Min-

ing Waste List, and 4) requesting available laboratory analysis data from selected operating mines. Based on a preliminary expert 

judgment, the listed formations were classified into three categories. A: inert B: probably inert, but has to be checked, C: probably 

not inert, has to be examined. This paper discusses the heavy metal contamination risk assessment (RA) in the Hungarian quarry-

mine waste sites. In total 30 waste sites (including both abandoned mines and active quarries) were selected for scientific testing 

using the EU Pre-selection Protocol. Altogether 93 field samples were collected from the waste sites including andesite, rhyolite, coal 

(lignite and black coals), peat, alginite, bauxite, clay and limestone. Laboratory analyses of the total toxic element content (aqua regia 

extraction), the mobile toxic element content (deionized water leaching) carried out according to the Hungarian GKM Decree No. 

14/2008. (IV.3) concerning mining waste management. A detailed geochemical study together with spatial analysis and GIS were 

performed to derive a geochemically sound contamination RA of the mine waste sites. Key parameters such as heavy metals, in 

addition to the landscape metric parameter such as the distance to the nearest surface and ground water bodies, or to sensitive recep-

tors such as settlements and protected areas calculated and statistically evaluated in order to calibrate the RA methods. Results show 

that some of the waste rock materials, assumed to be inert, were found non-inert. Thus, regional RA needs more spatial and petro-

logical examination with special care to rock and mineral deposit genetics. 

Keywords: risk assessment, pre-selection, rock formations, spatial analysis, geochemistry, inert, mining waste 

INTRODUCTION 

Mining has severe impacts on the environment, including 

contamination by toxic metals. In this context, Europe-

wide survey identified wide-spread pollution problems 

caused by mining, abandoned mines in particular (COM, 

2003). Since most of the elements used by the society 

come from mineral extraction (76 out of 90 frequently used 

elements), mining of mineral resources provide essential 

raw material for economic development (COM, 2005). 

Abandoned mines are more of a problem in areas with long 

historic mining like Europe, because mine closure practices 

have changed with time and environmental protection has 

not been considered for closed mines until  recently (Jor-

dan, 2004; Navarro et al., 2008). Apart from that aban-

doned mines are the same as active mines in terms of types 

of hazard and potential impact on the environment, their 

major problems are uncertainty in information and lack of 

control. Direct exposure to acid mine drainage (AMD) and 

sediments discharged from abandoned metal mines poses a 

serious hazard to aquatic biota and to humans (Peplow and 

Edmonds, 2005; Panagopoulos et al., 2009; Lei et al., 

2010; Sarmiento et al., 2011). Younger et al. (2002) esti-

mated that about 1,000 to 1,500 km of watercourses are 

polluted by metal mine discharges in the EU (estimate is 

for the former EU 15). There are an estimated 3 million 

potentially contaminated sites in the whole European Un-

ion, of which about 250,000 are actually contaminated and 

in need of remediation (EEA, 2007). Due to great volumes 

and slow chemical processes, mineralised rock in mine 

workings and in mine waste can release toxic compounds 

for a very long time on the scale of centuries and thousands 

of years (BAT, 2003). Thus, remediation of mine sites, 

including abandoned mines, has to consider long-term 

solutions and remediation technologies have to be sustain-

able for a long time (Sinding, 1999; Panagopoulos et al., 

2009). Around the mine site, soils and surface water in the 

receiving environment are often contaminated with harm-

ful elements or compounds (Puura et al., 2002; Sarmiento 

et al., 2011). These contaminated sites act as secondary 

sources for pollution, especially for historic sites (Jordan 

and D’Alessandro, 2004).  



2 Abdelaal (2014)  

 
Significance of contamination risk posed by mining 

is highlighted by mine accidents (Jordan and 

D’Alessandro, 2004). Examples of such accidents are 

Wales, UK, in 1966, Stava, Italy, in1985, Aznalcollar, 

Spain, in 1998, Baia Mare, Romania, in 2000 and most 

recently the catastrophic release of 850 million cubic 

meters of alkaline (pH >13) caustic red mud through the 

failed dam of the Ajka alumina plant depository on Octo-

ber 4, 2010 in Kolontar, Hungary, resulting in loss of lives 

and contamination of agricultural lands (Jordan et al., 

2011). Limited financial resources restrict remediation of 

sites at regional scale, therefore, there is a strong need to 

develop methodologies that rank sites based on risk mag-

nitude, rather than to produce absolute estimates of 

health/ecological impacts, or to prioritize the remediation 

actions (Long and Fischhoff, 2000; Marcomini et al., 

2009). U.S. EPA (2001) gives a detailed description of 

risk-based assessment of mine sites. The effort required to 

identify and prioritize contaminated sites in Europe is 

considerable (EEA, 2005). Moreover, as for the prioritiza-

tion process, the Soil Thematic Strategy for soil protection 

(COM, 2006) and the EU Mine Waste Directive 

(2006/21/EC), point out the need to develop spatial risk-

based methodologies for sustainable management of con-

taminated sites and mining waste sites at regional scale.  

The EU MWD Pre-selection Protocol (Stanley et 

al., 2011) is applied for contamination risk assessment of 

mine waste sites (Abdaal et al., 2013). The protocol has 

a ‘YES-or-NO’ questionnaire and consists of 18 ques-

tions using simple criteria available in existing databases 

readily enabling the preliminary screening of the mine 

waste sites for environmental risk (Fig. 1). This screen-

ing should result in the elimination of those sites which 

do not cause or have the potential to cause a serious 

threat to human health and the environment from the 

inventory of waste sites. Since the pre-selection protocol 

meant not to involve field sampling or laboratory analy-

sis, any level will be sufficient to pass the test and select 

the site for further investigation as a precautionary 

measure. In case of lack of knowledge or information, 

i.e. in the presence of uncertainty, an ‘UNKNOWN’ 

response is entered for the particular parameter which is 

the same as a YES response and the site is selected for 

further examination which is a precautionary position. In 

this study the mine waste sites included inside the rock 

formations and delineated as polygons’ maps.  

The geochemical documentation concerning inert 

classification and ranking of the wastes listed in the Inert 

Mining Waste List of the Hungarian Office of Mining 

and Geology involves the following procedures: 1) ex-

pert judgment, 2) data review, 3) representative field 

sampling and laboratory analysis of formations listed in 

the Inert Mining Waste List, and 4) requesting available 

laboratory analysis data from selected operating mines. 

Based on a preliminary expert judgment the listed for-

mations classified into three categories. A: inert B: prob-

ably inert, but has to be checked C: probably not inert, 

has to be examined (Table 1). According to the Hungari-

an GKM Decree No. 14/2008 (IV.3) the mining waste 

classified to inert as if the content of substances poten-

tially harmful to the environment or human health in the 

waste and in particular As, Cd, Co, Cr, Cu, Hg, Mo, Ni, 

Pb, V and Zn, including in any fine particles alone in the 

waste, is sufficiently low to be insignificant human and 

ecological risk, in both the short and long term, in order 

to be considered as sufficiently low to be of insignificant 

human and ecological risk, the content of these sub-

stances shall not exceed the thresholds values for geolog-

ical medium and underground waters identified as not 

contaminated in relevant legal rules.  

Table 1 The inert-not inert classification of the listed rock 

formations based on preliminary expert judgment. A: inert B: 

probably inert, but has to be checked C: probably not inert, has 

to be examined. Number of waste sites and field samples for 

each rock group are shown. 

Rock 

group 
Rock type 

Number 

of waste 

sites 

Number 

of samples  

Inert- 

Not Inert 

ranking 

Coal 

Lignite 2 10 C 

Black 

Coal 
2 7 C 

Peat 4 9 C 

Alginite 2 5 B 

Bauxite 2 6 B 

Rhyolite tuffs 2 6 B 

Clay 

Clay 4 8 A-B 

Bentonite 

clay 
1 1 A 

Andesite 10 37 B 

Limestone 1 4 A 
 

A detailed geochemical study together with spatial 

analysis and GIS performed to derive a geochemically 

sound contamination RA of the mine waste sites in order 

to identify the current geochemical status of sampled 

rock materials from the 30 mine waste sites and to an-

swer the question, if these waste rock materials (i.e. coal, 

peat, alginate, bauxite etc.) are still inert or non-inert. 

Distribution analysis applied to the median values of the 

elements As, Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn con-

tents in order to find if there are any significant correla-

tions between these elements to each other and to be 

compared to the local (country-specific) thresholds val-

ues for geological medium and underground waters in 

Hungary, in addition to the environmental limit values in 

Europe. The key landscape parameter, the distance from 

the waste sites (as centroid point of the formation poly-

gon) to the nearest surface and ground water bodies, or 

to sensitive receptors (such as settlements and protected 

areas) was statistically calculated in order to evaluate the 

RA method (MWD Pre-selection Protocol, Fig. 1) and to 

identify local thresholds (median-based values of the 

measured distances from waste sites to the nearest path-

ways and sensitive receptors) more adopted the local 

conditions in Hungary. 

The objective of this paper is to perform a pre-

selection RA for selected rock types using the Geologi-

cal map of Hungary as polygons, to evaluate the EU 

MWD Pre-selection Protocol (Stanley et al., 2011, Fig. 

1) by applying it to real-life cases of 34 mines waste 

sites in Hungary. Three tests are carried out.  
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First, a detailed statistical and landscape metric 

analyses are carried out for the Protocol threshold 

values (e.g. stream line density inside the polygons, 

number of patches (settlement, lake, Natura 2000 

sites and agricultural areas inside each polygon) and 

counting the polygon overlap areas between Natura 

2000 sites and the rock formation polygons.  

Second, altogether 93 field samples of different 

rock types, collected from the waste sites, were ana-

lysed for the total toxic element content (aqua regia 

extraction), the mobile toxic element content (deion-

ized water leaching) on the base of Hungarian GKM 

Decree No. 14/2008. (IV.3) concerning mining waste 

management. This detailed geochemical study to-

gether with spatial analysis and GIS were performed 

to derive a geochemically sound contamination RA 

of the mine waste sites.  

Third, A, B and C inert ranking system based on the expert 

judgment, has been applied for the rock types in the waste 

sites, which were compared to a simple risk-based ranking 

of the mine waste sites based on the specific geochemical 

analysis results of the waste samples.  

STUDY AREA 

Altogether 30 waste sites of both abandoned mines and 

active quarries have been selected for scientific testing 

using the EU MWD Pre-selection Protocol (Fig. 2). 93 

field samples have been collected from the waste sites 

including different rock samples such as; andesite, rhyolite 

tuffs, coal (lignite and black coals), peat, alginite, bauxite, 

clay and limestone according to the EuroGeoSurveys 

Geochemistry Expert Group Sampling Protocol (Fig. 3). 

Various wall rock and waste heap samples were collected 

for a detailed geochemical characterization. 

 

Fig. 1 The EU MWD Pre-selection Protocol Flowchart (Stanley et al. 2011) 
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The alginite mined in Pula site (NW Hungary, Fig. 

2) originated from biomass of fossil algae during sever-

al millions of years in volcanic craters. Its organic ma-

terial content is about 5-50% (Szabo, 2004). Gömöryo-

vá et al. (2009) reported that tests of alginite from the 

deposits in Pula and Gerce showed that it can be used 

in agriculture and forestry to improve soil quality, soil 

water dynamics and nutrient content, to increase organ-

ic matter content, colloid content and to protect soil 

against acidification, desiccation and leakage of nutri-

ents (Vass et al., 2003).  

In the power generation sector, coal is playing a dom-

inant role in the EU with 25% share of the total installed 

capacity and almost one-third of the power generation 

(Kavouridis and Koukouzas, 2008). Coal resources in 

Hungary are in total 3,300 million tons (Mt) with annual 

production between 9-10 Mt (of which 8 Mt is lignite) 

(Perger, 2009). At this rate of use the reserves could last 

for centuries. Three types of coal in Hungary were sam-

pled: 1) black coal in southern Mecsek Mountains (Lower 

Jurassic- Lias) is Hungary’s only black coal reserve, calcu-

lated to be 198.8 Mt. Due to the complicated geological 

circumstances and the high cost of exploitation, production 

was stopped in 2004. 2) Brown coal was widely mined 

throughout recent decades through the Transdanubian 

Mountains with good quality Eocene and Oligocene coal, 

supplying a significant amount of Hungary’s energy needs. 

Mining has virtually stopped due to economic reasons, with 

remaining reserves calculated to be 170 Mt. There is only one 

mine operating and supplying the Vértes Power Plant. Creta-

ceous coal exploitation in the region ended in 2004, after 

resources ran out. Poor quality Miocene reserves can be 

found in Northern Hungary. While all underground mining 

were ceased, small open-pit mines are still operating and 

exploitation can be extended. 3) Lignite represents about 

90% of the Hungarian coal reserves, which means that lignite 

is first on the Hungarian conventional energy sources. While 

some Miocene lignite reserves ran out in the Transdanubian 

Mountains in 1996, about 3000 Mt of Miocene-Pliocene 

lignite can be found in Visonta, Bükkábrány (Northern Hun-

gary) and Torony (Western Hungary) (Fig. 2). Recently, the 

Visonta and Bükkábrány sites were subject to vast open-pit 

mining supplying the Mátra Power Plant, while the Torony 

site remains practically untouched by any mining activity 

(Hamor-Vido, 2004). Peat was used as a fuel from early 

times in Europe. It was exploited intensively in agriculture 

and currently there is a renewed interest in the material be-

cause of its potential as a general source of hydrocarbons and 

other more particular organic raw materials used industrially. 

Peat was invariably found with significant moisture content 

at the surface of the ground, within a depth of 2-15m 

(Spedding, 1988). Number of significant articles were pub-

lished on different aspects of peat and its use (e.g. Del-Rio et 

al., 1992; Steinmann and Shotyk, 1997; Charman, 2002). 

 

Fig.2 Examples of rock formations (as polygons) and locations of field sampling from abandoned mines and active quarries in Hunga-

ry. A) Pula Alginite Formation, B) Gant Bauxite Formation, C) Lignite Formation at Visonta, D) Andesite Formation in the TokajMts., 

E) Peat formation at Pölöske, F) Clay Formation at Maza 
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Fig.3 Field sampling for the EU Mine Waste Directive Inert 

waste testing and characterization in Hungary 

1a and b. Alginite sampling in Pulla; 2a and b. Bauxite sam-

pling in Gant; 3a and b. Lignite sampling in Visonta; 4a and b. 

Andesite sampling in Tokaj. See Fig.1 for sampling locations 

MATERIALS AND METHODS 

Sampling  

This study used a multi-level decision support scheme 

including a representative field sampling and labora-

tory analysis of formations listed in the Inert Mining 

Waste List and requesting available laboratory analy-

sis data from selected operating mines. Altogether 93 

samples have been collected according to the EuroGe-

oSurveys Geochemistry Expert Group Sampling Pro-

tocol from 30 mine-quarry waste sites along Hungary 

(Fig. 2). Rock types and locations of samples are as 

follow: coal (10 lignite samples from Visonta and 

Bükkábrány sites and 7 black coal samples from Pécs-

Vasas mine sites); 9 peat samples from Pölöske, 

Hahót and Alsopatak sites; 5 alginite samples from 

Pula and Gérce sites; 6 bauxite samples from Gánt 

site; 8 clay samples from Máza, Miskolc and Vác sites 

and one bentonite clay sample from Mád site; 37 an-

desite samples from Recsk, Tokaj, Komló, Tállya, 

Sárospatak and Tarcal mine sites; 6 rhyolite tuffs 

samples from Gyöngyöslymos and Felsoabasár sites 

and 4 limestone samples from Vác mine site (Fig. 2, 

Table 1). Selection of the samples at the site depends 

on the location of each sample, (e.g. lignite includes 

wall, overburden and waste samples), and on the rock 

type (mineral composition), (e.g. oxi-andesite and 

pyrite andesite samples were collected). The collected 

two kilograms of samples were always composed of 

three sub-samples located at a minimum of 10m dis-

tance and at any sudden change in the color of waste 

rock, a new sample was collected (Fig. 3). 

Laboratory analysis 

Laboratory analysis of the collected 93 field samples is 

carried out for the total toxic element content (aqua regia 

extraction) and the mobile toxic element content (deion-

ized water leaching) at the Geological and Geophysical 

Institute of Hungary (MFGI) and 70 samples were select-

ed for the analysis of different forms of sulfur (sulfuric 

acid potential) are carried on the ISD DUNAFERR la-

boratory at Dunaujvaros on the base of Hungarian GKM 

Decree No. 14/2008. (IV.3) concerning mining waste 

management. Samples were analyzed for total toxic ele-

ment content (aqua regia extraction), the mobile toxic 

element content (deionized water leaching) with ICP-

OES. Samples were air-dried, crushed in an agate mortar, 

passed through disposable sieve of 100 mesh, and digested 

by aqua regia with HNO3, HCL and H2O2 under the ISO 

11466 procedure (International Organization for Standard-

ization 1995). All materials used during analytical deter-

minations were kept in Teflon or other metal-free contain-

ers. To check the quality of preparation and analysis, 

replicate determinations were performed on approximately 

25% of samples. Total element content of As, Cd, Co, Cr, 

Cu, Mo, Ni, Pb, V and Zn was defined by a mixed acid 

microwave unit digestion while deionized water leaching 

(pH=7) was performed to estimate the mobility of toxic 

elements in relative percent of total concentration.  

Spatial data 

Two types of data were used in this study. Waste site 

data includes (1) location of mines waste sites as poly-

gons (Fig. 2), (2) composition of the mine waste includ-

ing sulphides, toxic metals, and dangerous processing 

substances (Q2-Q3), (3) geometry of the waste site area 

(Q8) and slope of foundation (Q10), and (4) other data 

such as presence of impermeable layer beneath the waste 

site (Q12), and if the site is uncovered and thus the waste 

is exposed to wind or direct contact (Q13-Q14). Infor-

mation on the mine waste site engineering design was 

obtained from mine archives, aerial photos and field 

studies. Spatial data include topographic data of location 

of settlements as polygons, surface water courses 

(streams and lakes).  

Slope data calculated from the Hungarian national 

contour based military DDM 50m grid using ArcGIS 

10
®
 software (Fig. 4). Then polygons of the rock for-

mations added as overlay layer to the slope map in raster 

format using Spatial analysis tool in ArcGIS 10
®
. The 

slope value for each rock formation polygon (in degrees) 
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was counted as an average value from all pixels inside 

the polygon. Census data for 2009 is available from the 

Hungarian Central Statistical Office. Data on the nation-

al protected areas (Natura 2000 sites) and the location 

and status classification of groundwater bodies in Hun-

gary under the Water Framework Directive (WFD) were 

obtained from the Hungarian Central Directorate of 

Water and Environment (VKKI) and from EEA website 

(Waterbase-Groundwater datasets). Land use/land cover 

data (LULC) maps at 1:100,000 scale were obtained 

from the European CORINE Land Cover website.  

 

Fig.4 Calculation of the topographic slope for the sampled rock 

formations (as polygons) using the national contour-based 

spline-interpolated military 50m grid DEM. The same DEM is 

used for question Q10 of the EU Pre-selection protocol on the 

topographic slope below the mine waste site. Polygon highlight-

ed is this example delineates the Gant Bauxite Formation includ-

ing Bauxite samples from Gant bauxite mine 

In order to identify if there is a high permeable layer be-

neath the mine waste site (Q12), a surface permeability 

map for the geological formations of the 1:100,000 sur-

face geological map of Hungary has been constructed 

using ArcINFO
®
 10, on the basis of the physical and geo-

chemical characteristics of the uppermost rock units. 

Three classes were distinguished (Fig. 5). Low-

permeability formations (clay and other impermeable 

rocks), formations with medium-permeability (loess, sand-

gravel and fractured metamorphic and volcanic rocks) and 

with high-permeability (karstified limestones and dolo-

mites belong to this group). An example for the high per-

meability rock class is the Alginite Formation in Gérce 

Mining Area, NW Hungary (Fig.5). Polygons of the mines 

waste sites derived from the CORINE land cover 1:50,000 

map (2000) were overlaid by Google Earth
®
 aerial photo-

graphs (2013), in order to identify if the material within 

the mine waste sites is exposed to wind or not (Q13) or 

covered or not (Q14), (Fig. 6). 

  

Fig.5 Surface permeability map developed to answer question Q12 

of the EU MWD Pre-selection Protocol if there is a high permea-

ble layer beneath the mine waste site. Ploygon highlighted is an 

example for the Alginite Formation at the Gérce Mining Area, NW 

Hungary. See text for details. 

 

Fig.6 Polygons of the mine waste sites defined from the CORINE 

land cover map (CLC 2000) overlaid by Google Earth® aerial 

photographs (2013) to answer EU Pre-selection Protocol questions 

Q13 and Q14 on the air and direct contact pathways related to the 

cover of waste heaps, respectively. An example shows the Bauxite 

waste heap in Gánt Mining Area, Hungary. 

In this study the mine waste sites were included in-

side the rock formations and delineated as polygons 

using ArcGIS 10
®
 software (Fig.2). Altogether 30 mine-

quarry waste sites both abandoned mines and active 

quarries, were selected for scientific testing using the EU 

MWD Pre-selection Protocol (Stanley et al., 2011; Fig. 

1). Then, by running the protocol, the number of YES, 

NO and UNKNOWN responses are registered for each 

site.  
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The proportion of the certain to uncertain responses 

for a site and for the total number of sites may give an in-

sight of specific and overall uncertainty in the data we use 

(Table 2). The distance from mine-quarry waste sites to the 

nearest receptors such as human settlements (Q15) is meas-

ured using Proximity Analysis tools (Point Distance and 

Generate Near Table) in ArcINFO® 10 (Fig.2).  

Table 2 Summary statistics of the EU Pre-selection Protocol re-

sponses of questions Q1-Q18, showing the number of YES, NO 

and UNKNOWN responses (U) based on the EU thresholds 

EU Pre-selection 

Protocol 

Number of 

sampled sites 

EU thresholds 

YES NO U 

Impact Q1 30 0 30 0 

S
o

u
rc

e 

Q2 30 12 18 0 

Q3 30 14 16 0 

Q5 30 0 30 0 

Q8 30 30 0 0 

Q10 30 21 9 0 

P
at

h
w

ay
 Q11 30 16 14 0 

Q12 30 21 9 0 

Q13 30 18 12 0 

Q14 30 18 12 0 

R
ec

ep
to

r Q15 30 26 4 0 

Q16 30 22 8 0 

Q17 30 19 11 0 

Q18 30 28 2 0 

Statistical analyses were carried out using STAT-

GRAPHICS Centurion XV.II® software (Table 3), such 

as the topographic slope (Q10) and the measured dis-

tance to the nearest surface water courses (Q11), settle-

ments (Q15), ground water bodies (poor status) (Q16), 

protected areas (Natura 2000 sites, Q17) and agricultural 

areas (Q18). Summary statistics of the analyzed heavy 

metal concentrations from the mine waste sites (Aqua 

regia leaching analysis) were compared to the local 

(country-specific) thresholds values for geological medi-

um and underground waters in Hungary, in addition to 

the environmental limit values in Europe. Spearman’s 

rank correlation is performed on the total concentrations 

of the analysed elements to determine the relationships 

and variance between elements in the studied rock sam-

ples. Moreover, the Ficklin Diagram is constructed for 

the sum of heavy metals Zn, Cr, Cd, Pb, Co and Ni 

against pH in the deionized water leaching (DW, Fig. 7). 

RESULTS AND DISCUSSION 

The contamination RA according to the EU MWD Pre-

selection Protocol is carried out using the EU thresholds 

(slope ≤ 5
o
 and 1 km distance and number of people in 

the nearest settlement ≥ 100). The YES, NO and UN-

KNOWN responses of the EU MWD Pre-selection Pro-

tocol (Fig. 1) were registered and calculated for each 

question in Table 2. In this study each rock formation 

was treated as a waste site and projected in the map as 

one or more polygons (Fig. 2). Questions describe if the 

mine uses any dangerous chemicals in processing miner-

als (Q4), the geometry of the tailings lagoon height and 

area (Q6-Q7) and for the waste heap height (Q9) of the 

Pre-selection Protocol are not fit to the rock waste sites 

and were skipped in this study (Table 3). Out of 30 mine 

waste sites, none of sites have a documented incident 

(Q1, Jordan et al. 2011). In Q2, 12 sites with YES re-

sponses were producing waste with sulphide minerals, 

18 sites have NO responses. While in Q3, 14 sites were 

producing minerals with toxic heavy metals. In Q5, all 

sites are waste heaps and none of sites are tailings la-

Table 3 Class boundaries of the EU MWD Pre-selection Protocol parameters based on the natural-breaks found in the corresponding 

cummulative histograms. Class boundaries were used to define thresholds adapted to local conditions in Hungary 

Question 
Class 

boundaries 
Class-Range 

Median of 

class 

Median of all 

sites 
Number of sites 

Q10 
 

Topographic slope below waste site (degree) 
   

 
1.-20 1.-20 10 10 30 

Q11 
 

Distance to the nearest surface water course (m) 
 

 
 

 
<1300 0-1280 188 

 
22 

 
>1300 2219-5376 2861 631 8 

Q15 
 

Distance to the nearest settlement (m) 
 

 
 

 
0 0 0 

 
14 

 
>0<=1000 82-838 548 

 
12 

 
>1000 1585-3319 2350 150 4 

Q16 
 

Distance to the groundwater bodies of 'poor status' (m) 
 

 
 

 
0 0 0 

 
18 

 
>=36 36-14717 5229 0 12 

Q17 
 

Distance to the nearest Natura 2000 sites (m) 
 

 
 

 
0 0 0 

 
12 

 
>0<=1000 158-713 286 

 
6 

 
>1000 1072-5548 2416 224 11 

Q18 
 

Distance to the nearest agricultural areas (m) 
   

 
0 0-861 0 

 
24 

 
59-2092 3688-3976 359 0 6 
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goon. In Q8, all 30 waste heap sites with YES responses 

are greater than 10,000 m
2
 in surface area. The slope of 

the foundation upon which the waste heap rests is of 

concern with respect to stability. The greater the slope 

angle the greater the risk of waste heap failure. The EU 

threshold chosen is 1:12 which equates to 8.3% or a 

slope angle of almost 5°. Based on the slope values de-

rived from the 50m DEM, 16 waste heap sites with YES 

responses are greater than or equal 1:12 (5
o
) in slope 

(Q10). This shows that most of the sites were located in 

hilly areas. The use of the surface permeability map 

(Fig.5) developed to generate answers for Q12, resulted 

in 21 waste sites with YES responses and underlain by 

medium and high permeable layer, while 9 sites under-

lain by low permeable layers. When the mine waste site 

is covered and the original material is not accessible this 

means there is no direct contact with receptors. In Q13, 

18 sites were exposed to the wind and 12 sites were not. 

While in Q14, 18 sites were uncovered and 12 sites were 

covered with water, vegetation, soil and forest (Fig.6).  

For Q11, 16 sites are within 1 km distance to the 

nearest surface water bodies (streams and lakes). In Q15, 

26 mine waste sites are within 1 km distance to nearest 

human settlements with >100 people, indicating that 

these sites require prime attention if settlement protec-

tion is the concern. In Q16, 22 sites are within 1 km 

distance to the groundwater bodies of less than good 

status. For Q17, 19 waste sites are within 1 km distance 

to the national protected Natura 2000 sites. 12 waste 

sites were located completely inside the Natura 2000 

sites), this calls for immediate special attention if land-

scape protection is a priority. Moreover, in Q18, 28 

waste sites are within 1 km distance to the agricultural 

areas including arable lands, pastures, heterogeneous and 

permanent crops, 24 sites are completely located inside 

the agricultural lands (Table 2).  

Distribution analysis performed on the heavy 

metals (Table 3) identified various sub-groups in the 

parameter thresholds of the EU Pre-selection Protocol. 

For example, in Q10, altogether 30 waste sites have 

one class of topographic slope ranges from 1-20
o
. This 

result suggests the median slope value of all waste 

sites 10
o 

as a natural threshold reflecting the local 

Hungarian conditions, instead of the original 5
o
 slope 

threshold. In Q11, 22 waste sites were located within 

distance 0-1280m to the nearest surface water bodies 

and 8 sites are within distance 2,219–5,376m. This 

shows that almost 73% of the mine waste sites are 

significantly (at the 90% confidence) closer (≤1280m) 

to receiving streams than the other sites, thus the 

631m (medial value of all sites) threshold may better 

reflect the local topographic conditions for this ques-

tion. In Q15, 14 waste sites were located directly in-

side the nearest settlement (distance=0), indicating 

that these sites require prime attention if settlement 

protection is the concern, 12 sites are within distance 

82-838m to the nearest settlement and 2 sites are with-

in distance 1,585-3,319m to the nearest settlement. 

This result suggests the distance 150m (medial value 

of all sites) as a local threshold for this question in 

Hungary. It is interesting that 18 waste sites lie direct-

ly above the groundwater bodies with ‘poor status’ 

(Q16) and 12 sites are located inside the protected 

Natura 2000 sites (Q17). While in Q18, 24 waste sites 

are located inside the agricultural areas (Table 3).  

A preliminary risk-based site ranking is possible 

based on the EU thresholds (slope of almost 5
o
 and 1km 

distance) by counting and ranking the YES responses of 

the Pre-selection Protocol, and ranging in scores from 5 

to 10. Obviously, if there is more than one hazardous 

material at the source or there are multiple contamination 

pathways and receptors the site has a higher risk. A sim-

ple risk ranking of the rock formations based on the YES 

responses in descending order as follows: black coal and 

peat (10 YES), alginite (9 YES), lignite and clay (8 

YES), bauxite (7 YES), bentonite-clay (6 YES) and 

andesite and rhyolite tuffs (5 YES). In summary, after 

the existing pre-screening risk assessment of the mine 

waste sites in Hungary, 28 sites were directed to EXAM-

INE FURTHER based on the EU thresholds and two 

sites with no risk (one Bauxite site has no pathway and 

one Andesite site has no sensitive receptor). 

Table 4 summarizes the estimated heavy metal con-

centrations from the mine waste sites (aqua regia extraction) 

with respect to the environmental limit values in Hungary 

and Europe. In case of central tendency expressed by the 

Median, the analyzed heavy metals are in descending order; 

Zn>V>Cu>Cr>Pb>Co>Ni>As>Mo>Cd. This result shows 

that Zn has the highest median (24.6 mg/kg) and Cd has 

the lowest Median (0.11 mg/kg). In case of spread ex-

pressed by IQR/Med (Interquartile range/Median), the 

heavy metals are in descending order; 

Ni>As>Cr>V>Pb>Co>Cd>Zn>Cu. It is obvious that Ni 

has the highest spread (5.11) and Cu has the lowest 

(1.11). While spread expressed by Range/Median, the 

heavy metals are in descending order; 

Ni>Cr>Mo>Co>Zn>Pb>As>Cd>Cu>V. Ni still has the 

highest spread (327.6) but in this case V has the lowest 

spread (8.42).  

Total concentrations of heavy metals as defined by 

aqua regia extraction were compared to the environmen-

tal limit values in Hungary and to the European envi-

ronmental geochemical background values based on the 

FOREGS European Geochemical Atlas (Table 4) as 

follow: the Mean of As (18.17 mg/kg) exceeds the toler-

ated limit in Hungarian soils (15 mg/kg) and exceeds the 

Mean value of EU FOREGS geochemical background 

value (10 mg/kg). At the same time, the Mean of Cd 

(0.33 mg/kg) is less than the tolerated limit in Hungarian 

soils (1 mg/kg) and exceeds the Mean of EU FOREGS 

(0.3 mg/kg). The Mean of Ni (61) exceeds the tolerated 

limit in Hungarian soils (40) and exceeds Mean of EU 

FOREGS (31). Moreover, the median of Cu (12.3) ex-

ceeds the median of EU FOREGS (12).  

The Spearman’s rank correlations depicted in Ta-

bles 5 and 6 were performed between each pair of the 

analysed heavy metals from the waste sites by aqua 

regia and deionized water leaching analyses, respec-

tively. In contrast to the more common Pearson correla-

tions, the Spearman coefficients are computed from the 

ranks of the data values rather than from the values 

themselves. 
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Thus they are less sensitive to outliers than the Pear-

son coefficients. Table 5 shows that all the elemental 

pairs of Aqua regia leaching (with bold figures) have 

strong correlations with each other which P < 0.05, 

for example Pb and Zn(r = 0.63, df = 93, P < 0.05), 

and Ni and Pb (r = 0.71, df= 93, P < 0.05) etc. How-

ever, pairs such as Co/Mo, Cr/Mo, Cu/Mo, Mo/Ni, 

Mo/Pb and Mo/Zn show a weak correlation with 

each other (P>0.05). Table 6 shows that all the ele-

mental pairs of deionized water leaching (with bold 

figures) have strong correlations with each other, for 

example between Co and Ni (r= 0.8). Moreover, 

pairs such as As and Cd, As and Pb, Cd and Cu, Cd 

and Pb, Co and Mo, Cr and Zn, Cu and Pb, Mo and 

Pb and Mo and Zn show a weak but significant cor-

relation with each other (p>0.05). Strong correlations 

signify that each pair of elements may have common 

contamination sources. Further detailed studies of 

physico-chemical properties and metal associations 

are needed to ascertain these results.  
 

Table 4 Summary statistics of heavy metal concentrations from the mine waste sites (aqua regia extraction in mg/kg) in respect to the 

environmental limit values in Hungary and the European Top Soil Baseline Values. Minimum (MIN), maximum (MAX), median 

(MED) and spread expressed as median absolute deviation (MAD), lower quartile (LQ), upper quartile (UQ), Interquartile range 

(IQR), Standard deviation (SD). Bold figures show those heavy metal concentrations higher than the environmental standard limits 

(i.e. the tolerated limit in Hungarian soils or EU FOREGS Geochemical Atlas baseline value for top soils). 

 

 As Cd Co Cr Cu Mo Ni Pb V Zn 

Min 0.6 0.06 0.018 0.537 0.766 0.2 0.4 1.15 3 0.1 

LQ 1.54 0.073 2.92 2.58 6.8 0.2 1.88 4.56 5.48 14.4 

Med 3.93 0.117 5.12 8.11 12.3 0.2 4.79 7.08 18.4 24.6 

UQ 14.3 0.22 9.98 21 20.5 0.2 26.4 14.3 38 46.1 

IQR 12.76 0.152 7.06 18.42 13.7 0 24.52 9.74 32.52 31.7 

Max 247 6.07 416 1185 573 24.3 1570 468 158 1690 

Mean 18.17 0.33 19.92 56.24 34.16 1.08 60.89 23.4 28.91 84.28 

Range 246.4 6.01 415.9 1184.4 572.2 24.1 1569.6 466.8 155 1689.9 

SD 43.31 0.87 63.67 170.09 92.44 2.96 223.3 68.72 31.64 255.83 

MAD 3.07 0.057 3.52 6.34 5.7 0 4.25 3.84 13.94 15.8 

Mode 0.6 0.06 11.5 
 

13.9 0.2 0.4 
 

3 0.1 

Range/Med 62.69 51.36 81.24 146.04 46.52 120.5 327.68 65.93 8.42 68.69 

IQR/Med 3.24 1.29 1.37 2.27 1.11 0 5.119 1.37 1.76 1.28 

MAD/Med 0.78 0.48 0.68 0.78 0.46 0 0.88 0.54 0.75 0.64 

Environmental standard values in Hungary and the European Top Soil Baseline Values (FOREGS Atlas) 

Tolerated limit in 

Soils, Hungary 
15 1 30 75 75 7 40 100 

 
200 

E
U

 F
O

R
E

G
S

 Min <0.5 <0.01 <1 1 1 <0.1 <2 <3 
 

4 

Max 220 14.1 255 2340 239 21.3 2560 886 
 

2270 

Med 6 0.145 7 22 12 0.62 14 15 
 

48 

Mean 9.88 0.28 8.91 32.6 16.4 0.94 30.7 23.9 
 

60.9 
 

Table 5 The Spearman’s rank correlation coefficients between concentrations of heavy metals from the waste sites (aqua regia 

extraction).  Significant correlation coefficients are in bold; ρ  < 0.05. 

  As Cd Co Cr Cu Mo Ni Pb Zn 

As 
         

Cd 0.45 
        

Co 0.41 0.34 
       

Cr 0.37 0.39 0.72 

      
Cu 0.42 0.42 0.77 0.66 

     
Mo 0.35 0.22 -0.13 -0.12 0.06 

    
Ni 0.57 0.5 0.72 0.81 0.7 0.19 

   
Pb 0.5 0.58 0.61 0.57 0.6 0.09 0.71 

  Zn 0.31 0.39 0.86 0.61 0.71 -0.17 0.57 0.63   
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The Ficklin Diagram (adapted after Plumlee et al., 

1999) showing the sum of heavy metals Zn, Cr, Cd, Pb, 

Co and Ni from deionized water leaching (DW) analysis 

is plotted against pH (Fig.7). Differences in the sum of 

the previous base metals have proven the most diagnos-

tic in differentiating between different geologic controls. 

This diagram shows two groups as follow.(1) Coal, Lig-

nite, Peat and Bauxite samples are distributed from acid-

high acid to near-neutral environments, with low to ex-

treme concentrations of dissolved metals. (2) Alginate, 

Andesite, Clay, Rhyolite tuffs and Limestone samples 

are distributed in near-neutral environments, with low to 

high concentrations of dissolved metals. 

Multivariate analysis such as CA and PCA us-

ing the analysed trace elements could not identify 

significant groups of samples. This is not unexpected 

due to the heterogeneity of the sampled rock types. It 

seems that specific rock formations with ore miner-

als content, including pyrite with acid generation 

potential, such as some andesites and coals are dis-

tinct from the non-mineralised as shown by the Fick-

lin Diagram (Fig.7). 

The relative mobility of heavy metals in the various 

sampled rock formations was calculated as the percent-

age of the mobile element content (deionized water 

leaching) to the total element content (Aqua regia extrac-

tion) for the 93 samples. Then the median value of these 

mobility percentages was calculated for each rock type 

(Fig.8). Results show in Black Coal samples, the relative 

mobility of the heavy metals reduced in the following 

order: Zn (30.7) > Co (29.5) > Ni (26) > V (11.2) > Cd 

(4.6) > Cu (2.3) > Pb (0.3) > As (0.27) > Mo (0.26). In 

Lignite samples, Mo (5) > V (4.6) > As (1.4) > Cd (1.2) 

> Zn (0.8) > Pb (0.5) > Co (0.3) > Ni (0.2) > Cu (0.16) > 

Cr (0.1). In Peat samples, Zn (31) > V (16) > Mo (6) > 

Cd (3) > As (2.5) > Co (1.3) > Pb (0.8) > Cu (0.7) > Cr 

(0.4) > Ni (0.3). In Bauxite samples, Mo (5) > Cd (0.7) > 

V (0.4) > As (0.3) > Co (0.11) > Pb (0.1) > Zn (0.06) > 

Cu (0.05) > Ni (0.03) > Cr (0.01). In Alginite samples, 

Mo (175) > V (2.1) > Cd (0.6) > As (0.2) > Pb (0.08) > 

Cu (0.04) > Ni (0.03) > Zn (0.025) > Co (0.02) > Cr 

(0.01). In Clay samples, Mo (8.7) > V (2.3) > Cd (1.8) > 

Zn (0.5) > As (0.4) > Pb (0.2) > Co (0.1) > Ni (0.07) > 

Cu (0.05) > Cr (0.04). In Andesite samples, Mo (5) > Cd 

 

Fig.7 Ficklin Diagram showing the sum of heavy metals Zn, Cr, Cd, Pb, Co and Ni plotted against pH in the deionized water leach-

ing (DW). Note that acid generation potential (pH<5.5) is for coal, lignite and peat rocks, in addition to a bauxite sample. Elevated 

mobile heavy metal content is associated with coal, andesite and some clay and a bauxite samples. See text for details. 

 

Table 6 The Spearman’s rank correlation coefficients between concentrations of heavy metals from the waste sites (deionized 

water leaching). Significant correlation coefficients are in bold; ρ  < 0.05. 

  As Cd Co Cr Cu Mo Ni Pb Zn 

As 
         

Cd 0.12 
        

Co 0.22 0.27 
       

Cr 0.03 0.25 0.26 
      

Cu 0.17 0.16 0.35 0.18 
     

Mo 0.28 0.08 -0.04 0.1 0.27 
    

Ni 0.21 0.3 0.8 0.28 0.47 0.16 
   

Pb -0.04 0.14 0.31 0.24 0.14 0.01 0.26 
  

Zn 0.14 0.02 0.27 -0.04 0.47 0.11 0.35 0.12   
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(4) > As (2.5) > V (1.6) > Ni (0.7) > Pb (0.6) > Zn (0.4) 

> Co (0.2) > Cu (0.15) > Cr (0.14). While in Rhyolite 

tuffs samples, V (16.6) > Mo (5) > Ni (4) > Cd (3) > As 

(2.3) > Co (2) > Zn (1.2) > Cr (0.8) > Cu (0.7) > Pb 

(0.2). It is obvious that Mo had the highest mobility in 

Lignite, Bauxite, Alginite, Clay and Andesite rock sam-

ples and Zn had the highest mobility in Black coal and 

Peat samples. While, V had the highest mobility in Rhy-

olite tuffs samples (Fig. 8). 

 

 

Fig. 8 Distribution of the relative mobility (%) of heavy metals 

in the various sampled rock formations 

Based on the expert judgment, the listed rock for-

mations were classified into three preliminary categories. 

A: inert B: probably inert, but has to be checked C: 

probably not inert, has to be examined (Table 1). Ac-

cording to the geochemical analysis results in this study, 

coal (black coal and lignite) and peat samples are not 

inert and classified into group C which matches with the 

preliminary expert judgment. While alginite, bauxite, 

rhyolite tuffs and clay samples are probably inert and 

classified into B group which also matches with the 

preliminary expert judgment. Moreover limestone and 

clay samples are inert (A group). It is interesting to re-

port that andesite samples are probably inert (B group) 

and according to our geochemical analyses, it was found 

that 5 andesite samples contain higher concentrations of 

the heavy metals Ni, Zn Cu, Cr and Co than the mini-

mum, median and mean values of the Hungarian stand-

ards. While As is even higher than the maximum values 

of the national environmental standards. These results 

may suggest that those 5 andesite samples with higher 

heavy metal concentrations could classify the andesite 

rock formation into the B or C groups. 

CONCLUSIONS 

This paper discusses the heavy metal contamination risk 

assessment (RA) in a selected group of the mine waste 

sites in Hungary. A detailed geochemical study together 

with spatial analysis using GIS was performed to derive 

a geochemically sound contamination RA of the mine 

waste sites. Key parameters such as heavy metals, in 

addition to the landscape parameter such as the distance 

to the nearest surface and ground water bodies, or to 

sensitive receptors such as settlements and protected 

areas are calculated and statistically evaluated in order to 

calibrate the RA methods.  

In deionized water leaching, coal, lignite, peat and 

bauxite samples were located in one distinct group in the 

Ficklin diagram and distributed from acid to near-neutral 

region in the graph with low to extreme concentrations 

of dissolved metals. While alginate, andesite, clay, rhyo-

lite tuffs and limestone samples were located in one 

group and distributed in the near-neutral region, with 

low to high concentrations of dissolved metals.  

A simple risk ranking of the waste rock materials 

based on the YES responses to risk factor questions  in 

descending order of risk resulted as follows: black coal 

and peat (10 YES), alginite (9 YES), lignite and clay (8 

YES), bauxite (7 YES), bentonite-clay (6 YES) and ande-

site and rhyolite tuffs (5 YES). After the existing pre-

screening risk assessment of the studied waste sites in 

Hungary, 28 sites were directed to EXAMINE FURTHER 

based on the EU thresholds and two sites with no risk.  

Results show that some of the waste rock materials, 

assumed to be inert such as the 5 andesite sites that con-

tain higher concentrations of the heavy metals As, Ni, Zn 

Cu, Cr and Co than the minimum, median and mean 

values of the Hungarian standards. These results may 

suggest that those 5 andesite samples with higher heavy 

metal concentrations could reclassify the andesite rock 

formation into the B and C groups. Thus, regional RA 

needs further spatial and petrological examination with 

special care to rock and mineral deposit genetics. 
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