A yield stability index and its application for crop production

Keywords: crop yield, fluctuation, risk, time series, yield stability


A good crop production technology should provide high yields under varying environmental conditions, i.e. keep yield fluctuations small. The magnitude of fluctuations is usually measured by statistical indicators of average dispersion, e.g. the standard deviation. However, while many small fluctuations are usually well tolerated by the farmer, an extreme yield may be a serious risk factor.  The present research introduces a yield stability index developed which measures the frequency of extremely high and extremely low yields. The index is tested for 10 countries and 18 crops for 2004-2016, comparing it to 1961-2000, pointing out possible agricultural policy implications.


Download data is not yet available.


Bacsi Z., Vízvári B. (2002). Módszer a termésátlagok ingadozásának elemzésére (A method for measuring yield fluctuations - In Hungarian). Gazdálkodás, 46 (3), 63-74.

Brink D. (2010). Essentials of Statistics. Ventus Publishing APS.

Cuddy J. A., Della Valle P. A. (1978). Measuring instability of time series data. Oxford Bulletin of Economics and Statistics, 40, 79-85.

FAO (2018). FAO Statistical Database, http://www.fao.org/faostat/en/#data/QC. Accessed: 10 March 2018

Gollin, D. (2006). Impacts of International Research on Intertemporal Yield Stability in Wheat and Maize: An Economic Assessment. Mexico, D.F.: CIMMYT.

Grover K. K., Karsten H. D., Roth G. W. (2009) ). Corn Grain Yields and Yield Stability in Four Long-Term Cropping Systems. Agronomy Journal, 101, 940–946

Heinemann J.A., Massaro M., Coray D. S., Zanon Agapito-Tenfen S. and Wen J.D. (2014). Sustainability and innovation in staple crop production in the US Midwest. International Journal of Agricultural Sustainability, 12:1, 71-88, DOI: 10.1080/14735903.2013.806408

Kamidi, R. E. (2001). Relative Stability, Performance, and Superiority of Crop Genotypes Across Environments. Journal of Agricultural, Biological, and Environmental Statistics, 6 (4) 449–460 https://doi.org/10.1198/10857110152946820

Khalil M., Pour-Aboughadareh A. (2016). Parametric and non-parametric measures for evaluation yield stability and adaptability in barley doubled haploid lines. Journal of Agricultural Science and Technology, 18, 789-803

Kovářová K., Nádeník M., Pícha K. (2017). The Czech Republik Sugar Market Development in the Context of the Phasing Out of Sugar Quota. Deturope, 9 (2), 110-117.

Kovářová K., Procházková K. (2017). Vlív sezónní dynamiky jakostních ukazatelcú na vykupní cenu méka v kontextu situace na trhu.(Influence of the seasonal progress of the quality characteristics on the purchase prices of milk in context of the market situation – In Czech). Deturope, 9 (1), 35-46.

Molnár T., Molnárné Barna K. (2015). A szélsőséges időjárási jelenségek hatásai (Impacts of extreme weather phenomena – In Hungarian). Deturope, 7 (1), 79-94.

Nielsen D. C., Vigil M. F. (2018). Wheat Yield and Yield Stability of Eight Dryland Crop Rotations. Agronomy Journal, 110, 594–601. doi:10.2134/agronj2017.07.0407

Piepho, H.P. (1998). Methods of comparing the yield stability of cropping systems. Journal of Agronomy and Crop Science, 180, 193–213. doi:10.1111/j.1439-037X.1998.tb00526.x

Tóth-Kaszás N., Keller K., Ernszt I., Péter E. (2017). Helyi termék: biztos megélhetés vagy keresetkiegészítés? (Local products: sure livelihood or part-time income? – In Hungarian). Gazdálkodás, 61 (4) 335-354.

Vízvári B., Bacsi Z. (2002). Technological Development and the Stability of Technology in Crop Production. Journal of Central European Agriculture 3 (1), 63-72.

Wang X., Li Y., Qian Z., Shen Z. (2012). Estimation of Crop Yield Distribution: Implication for Crop Engineering Risk. Systems Engineering Procedia, 3. 132 – 138.

How to Cite
Bacsi, Z., & Hollósy, Z. (2019). A yield stability index and its application for crop production. Analecta Technica Szegedinensia, 13(1), 11-20. https://doi.org/10.14232/analecta.2019.1.11-20