Thermal experimental and numerical heat transfer analysis of a solid cylinder in longitudinal direction




Orthogonal geometries, temperature fields, steady and transient state, Numerical solutions, FEM analysis.


The analysis of heat transfer in solid bodies with orthogonal geometries and knowledge thereof, is of vast importance in different fields of engineering and research. An important field of study is the thermal analysis in machine-parts that in most cases are designed and shaped with orthogonal geometries. Nevertheless, due to the high complexity and the cost that thermal experiments represent, FEM analysis and numerical solutions are used to foresee thermal fields on these components. These methodologies are certainly reliable, although may vary from real experiments. On that account, this paper presents a thermal experimental test in a solid cylinder of length  and  , made of ISO C45 steel that emulates a machine-part (cylindrical parts as shafts, fasteners and the like). The temperature fields along the longitudinal direction  were analyzed in steady and transient state under homogeneous boundary conditions of the first kind (prescribed temperatures at the boundaries). The three solutions, experimental, numerical and FEM simulations were compared with the purpose of validating the results obtained by each method of solution respectively.


Download data is not yet available.


E.K. Dheyaa, H.K. Jobair & A.I. Oday, Analytical evaluation of temperature dependent thermal conductivity for solid and hollow cylinders subjected to a uniform heat generation. International Journal of Mechanical Engineering and Technology, vol.9 (10), October (2018), pp. 1095-1106.

K. Großman, Thermo-energetic Design of Machine Tools. Springer, (2015). DOI: 10.1007/978-3-319-12625-8.

M. Storchak & T. Stehle, Untersuchungder thermischen Wirkungen beim orthogonalen Zerspanen. Institut für Werkzeugmaschinen, Universität Stuttgart.

E. Uhlmann & J. Hu, Thermal Modelling of a High-Speed Motor Spindle, 5thCIRP Conference on High Performance Cutting 2012, (2012), pp. 313-318.

C. Brecher, K. Bakarinow, S. Neus, M. Wennemer & M. Fey, Thermische Simulation von Vorschubachskomponenten. Wt Werkstattstechnik online, (2015), pp.156-160.

M. Weck, Werkzeugmaschinen 5 Messtechnische Untersuchung und Beurteilung, dynamische Stabilität. Springer, (2006).

M. N. Özisik, H. R.B. Orlande, M.J. Colaco & R. Cotta, Finite Difference Methods in Heat Transfer. CRC Press Taylor & Francis Group, (2017).

K. D. Cole, J.V. Beck, A. H. Sheikh & B. Litkouhi, Heat Conduction using Green’s Functions.Second Edition. Taylor & Francis Group, LCC, (2011).

I. Magnabosso, P. Ferro, A. Tiziani, F. Bonollo, Induction heat treatment of a ISO C45 steel bar: Experimental and Numerical Analysis. Computational Materials Science, vol. 35, Issue 2, (2006), pp. 98-106.

M. Szulborski, S. Lapczynski & L. Kolimas, Thermal Analysis of Heat Distribution in Busbars during Rated Current flow in Low-Voltage Industrial Switchgear. Energies 2021, 14, 2427, (2021).

P. Bencs, Sz. Szabó & D. Oertel, Simultaneous Measurement of Velocity and Temperature Field in the Downstream region of a Heated Cylinder. Engineering Review, vol. 34, Issue 1, pp.7-13, (2014).

H. Je-Chin & L. M. Wright, Experimental Methods in Heat Transfer and Fluid Mechanics. Taylor & Francis Group, CRC Press, (2020).

S. Seguir-Ouali, D. Saury, S. Harmand, O. Phillipart & D. Laloy, Convective Heat Transfer inside a Rotating Cylinder with an axial Air Flow. International Journal of Thermal Sciences 45(2006), pp. 1166-1178, (2006).

P. Stephan, S. Kabelac, M. Kind, D. Mewes, K. Schaber & T. Wetzel, VDI-Wärmeatlas, Fachlicher Träger VDI/Gesellschaft, Verfahrenstechnik und Chemieingenieurwesen. 12 Auflage, Springer Vieweg, (2019).

T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer. Eight Edition, Wiley & Sons, (2017).




How to Cite

Cabezas, S., Hegedűs, G., & Bencs, P. (2023). Thermal experimental and numerical heat transfer analysis of a solid cylinder in longitudinal direction. Analecta Technica Szegedinensia, 17(1), 16–27.