Optimization of Operational Parameters to Enhance Ultrafiltration Efficiency Using Dairy Wastewater Model

Authors

DOI:

https://doi.org/10.14232/analecta.2025.1.45-58

Keywords:

ultrafiltration, Dairy wastewater, Transmembrane pressure, Stirring speed, molecular weight cut-off

Abstract

Ultrafiltration is a key technology for treating dairy wastewater; however, its efficiency is often hindered by critical challenges such as membrane fouling and concentration polarization. To mitigate these issues, one effective approach involves optimizing operational parameters to enhance system performance and longevity. In this study the influence of key operational parameters on the performance of a lab-scale low-pressure ultrafiltration membrane system for treating dairy wastewater model were investigated. The optimization focused on three critical factors: transmembrane pressure (TMP), stirring speed, and membrane molecular weight cut-off (MWCO). Key performance metrics, including permeate flux, membrane retention efficiency, and total, reversible, and irreversible membrane resistances, were analyzed. The results showed that the optimal conditions were identified using a 20 kDa polyethersulfone membrane, with a TMP of 0.3 MPa and a stirring speed of 400 rpm. Statistical analysis was conducted to further refine and validate the optimization of these parameters.

Downloads

Download data is not yet available.

References

Bănăduc, D.; Simić, V.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; Simić, S.; Curtean-Bănăduc, A. Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570.

Mondal, S.; Palit, D. Challenges in Natural Resource Management for Ecological Sustainability. In Natural Resources Conservation and Advances for Sustainability; Elsevier, 2022; pp. 29–59.

Grout, L.; Baker, M.G.; French, N.; Hales, S. A Review of Potential Public Health Impacts Associated with the Global Dairy Sector. GeoHealth 2020, 4, e2019GH000213.

Bansal, A.; Kumar, A. Exploring Challenges in Effective Wastewater Treatment for Dairy Industries. In Sustainability of Water Resources: Impacts and Management; Springer, 2022; pp. 237–247.

Vlotman, D.E.; Key, D.; Bladergroen, B.J. Technological Advances in Winery Wastewater Treatment: A Comprehensive Review. South African J. Enol. Vitic. 2022, 43, 58–80.

Miao, R.; Ma, B.; Li, P.; Wang, P.; Wang, L.; Li, X. Mitigation Mechanism of Ozonation in the Casein Fouling of Ultrafiltration Membranes: Possible Application in Dairy Wastewater Treatment. J. Memb. Sci. 2021, 629, 119307.

Liao, Y.; Bokhary, A.; Maleki, E.; Liao, B. A Review of Membrane Fouling and Its Control in Algal-Related Membrane Processes. Bioresour. Technol. 2018, 264, 343–358.

Reig, M.; Vecino, X.; Cortina, J.L. Use of Membrane Technologies in Dairy Industry: An Overview. Foods 2021, 10, 2768.

Field, R.W.; Wu, J.J. Permeate Flux in Ultrafiltration Processes—Understandings and Misunderstandings. Membranes (Basel). 2022, 12, 187.

Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F. Membrane Fouling in Desalination and Its Mitigation Strategies. Desalination 2018, 425, 130–155.

Nthunya, L.N.; Bopape, M.F.; Mahlangu, O.T.; Mamba, B.B.; Van der Bruggen, B.; Quist-Jensen, C.A.; Richards, H. Fouling, Performance and Cost Analysis of Membrane-Based Water Desalination Technologies: A Critical Review. J. Environ. Manage. 2022, 301, 113922.

Abu-Zurayk, R.; Alnairat, N.; Khalaf, A.; Ibrahim, A.A.; Halaweh, G. Cellulose Acetate Membranes: Fouling Types and Antifouling Strategies—A Brief Review. Processes 2023, 11, 489.

Lan, Y.; Serrano, K.G.; Coetsier, C.; Causserand, C. Fouling Control Using Critical, Threshold and Limiting Fluxes Concepts for Cross-Flow NF of a Complex Matrix: Membrane BioReactor Effluent. J. Memb. Sci. 2017, 524, 288–298, doi:10.1016/j.memsci.2016.11.001.

Warsinger, D.M.; Swaminathan, J.; Guillén-Burrieza, E.; Arafat, H.A.; Lienhard, J.H. Scaling and Fouling in Membrane Distillation for Desalination Applications: A Review. Desalination 2015, 356, 294–313, doi:10.1016/j.desal.2014.06.031.

Qrenawi, L.I.; Abuhabib, A.A. A Review on Sources, Types, Mechanisms, Characteristics, Impacts and Control Strategies of Fouling in RO Membrane Systems. Desalin. Water Treat 2020, 208, 43–69.

Saffarimiandoab, F.; Gul, B.Y.; Tasdemir, R.S.; Ilter, S.E.; Unal, S.; Tunaboylu, B.; Menceloglu, Y.Z.; Koyuncu, İ. A Review on Membrane Fouling: Membrane Modification. Desalin. Water Treat 2021, 216, 47–70.

Rajendran, D.S.; Devi, E.G.; Subikshaa, V.S.; Sethi, P.; Patil, A.; Chakraborty, A.; Venkataraman, S.; Kumar, V.V. Recent Advances in Various Cleaning Strategies to Control Membrane Fouling: A Comprehensive Review. Clean Technol. Environ. Policy 2024, 1–16.

Zhao, Y.; Zhou, Z.; Liu, C.; Li, X.; Wang, T.; Qu, F. Ultrafiltration Membrane Fouling Control Caused by Extracellular Organic Matter Extracted from Microcystis Aeruginosa: Role of Visible Light Pre-Photocatalysis and Membrane Characteristics. J. Memb. Sci. 2025, 717, 123613.

Latif, E.F.; Elmaadawy, K. Overcoming Fouling Challenges in Ultrafiltration for Drinking Water Treatment. Eng. Res. Express 2024, 6, 42101.

Wang, L.; Wang, X.; Fukushi, K. Effects of Operational Conditions on Ultrafiltration Membrane Fouling. Desalination 2008, 229, 181–191.

Liu, J.; Yin, M.; Wang, M.; Zhang, X.; Ge, B.; Liu, S.; Lu, J.; Cui, Z. A Novel Membrane Based Process to Isolate Photosystem-I Membrane Complex From Spinach. Photosynth. Res. 2011, 107, 187–193, doi:10.1007/s11120-011-9625-5.

Liu, Y.; Wang, Z.; Xu, M.; Qi, F.; Li, C.; Sun, D.; Nan, J.; Li, W.; Guan, X.; Ikhlaq, A. Unveiling the Role of Cake Layer in Coagulation-Ultrafiltration on Membrane Fouling and Emerging Application as Dynamic Membrane before Ultrafiltration. Sep. Purif. Technol. 2024, 350, 127932.

Mwanga, N.; Wang, X.; Li, P.; Liu, Y.; Xia, S.; Yin, D.; Rui, M.; Ye, Y. Effect of Micro and Nanobubble Size and Concentration on Membrane Fouling: Strategies for Energy-Saving and Ultrafiltration Efficiency Enhancement. Desalination 2024, 587, 117929.

Al-Tayawi, A.N.; Csott, H.; Lennert, J.R.; Hovorka, Z.H.; László, Z.; Hodúr, C.; Kertész, S. Optimization of Ultrafiltration Parameters in a Laboratory-Scale Unit Using Dairy Model for Membrane Fouling Mitigation. In Proceedings of the Book of Abstracts from the 10th International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2024); Trans Tech Publications Ltd, 2024; Vol. 8, pp. 18–20.

John, H. Optimization of Process Parameters for the Production of Soy Protein by Ultrafiltration Using ANN. J. Food Process. Preserv. 2024, 2024, 1–10, doi:10.1155/2024/5535413.

Chan, M.K.; Tan, S.J.; Yeow, A.T.H.; Ng, S.C.; Lau, W.J. Zeolite-Based Poly (Vinylidene Fluoride) Ultrafiltration Membrane: Characterization and Molecular Weight Cut-Off Estimation with Support Vector Regression Modelling. Membranes (Basel). 2024, 14, 91.

Wang, F.; Tarabara, V. V. Pore Blocking Mechanisms during Early Stages of Membrane Fouling by Colloids. J. Colloid Interface Sci. 2008, 328, 464–469, doi:10.1016/j.jcis.2008.09.028.

Li, C.; Ma, Y.; Li, H.; Peng, G. A Convenient Method for the Determination of Molecular Weight Cut-off of Ultrafiltration Membranes. Chinese J. Chem. Eng. 2017, 25, 62–67.

Quezada, C.; Estay, H.; Cassano, A.; Troncoso, E.; Ruby-Figueroa, R. Prediction of Permeate Flux in Ultrafiltration Processes: A Review of Modeling Approaches. Membranes (Basel). 2021, 11, 368.

Lakra, R.; Choudhury, S.; Basu, S. Recovery of Protein and Carbohydrate from Dairy Wastewater Using Ultrafiltration and Forward Osmosis Processes. Mater. Today Proc. 2021, 47, 1400–1403.

Zhang, B.; Feng, X. Assessment of Pervaporative Concentration of Dairy Solutions vs Ultrafiltration, Nanofiltration and Reverse Osmosis. Sep. Purif. Technol. 2022, 292, 120990.

Tarapata, J.; Maciejczyk, M.; Zulewska, J. Microfiltration of Buttermilk: Partitioning of Proteins and Modelling Using a Resistance-in-Series Model. Int. Dairy J. 2022, 134, 105445.

Di Bella, G.; Di Trapani, D. A Brief Review on the Resistance-in-Series Model in Membrane Bioreactors (MBRs). Membranes (Basel). 2019, 9, 24.

Tarapata, J.; Dybowska, B.E.; Zulewska, J. Evaluation of Fouling during Ultrafiltration Process of Acid and Sweet Whey. J. Food Eng. 2022, 328, 111059.

Vincent-Vela, M.-C.; Cuartas-Uribe, B.; Álvarez-Blanco, S.; Lora-García, J. Analysis of an Ultrafiltration Model: Influence of Operational Conditions. Desalination 2012, 284, 14–21.

Boyd, C.C.; Duranceau, S.J. Evaluation of Ultrafiltration Process Fouling Using a Novel Transmembrane Pressure (TMP) Balance Approach. J. Memb. Sci. 2013, 446, 456–464.

Kertész, S.; László*, Z.; Forgács, E.; Szabó, G.; Hodúr, C. Dairy Wastewater Purification by Vibratory Shear Enhanced Processing. Desalin. Water Treat. 2011, 35, 195–201.

Chen, Z.; Luo, J.; Wang, Y.; Cao, W.; Qi, B.; Wan, Y. A Novel Membrane-Based Integrated Process for Fractionation and Reclamation of Dairy Wastewater. Chem. Eng. J. 2017, 313, 1061–1070.

Kumar, A.; Panda, U. Microfluidics-Based Devices and Their Role on Point-of-Care Testing. In Biosensor Based Advanced Cancer Diagnostics; Elsevier, 2022; pp. 197–224.

Whittlesey, R. Vertical Axis Wind Turbines: Farm and Turbine Design. In Wind Energy Engineering; Elsevier, 2017; pp. 185–202.

Ellenberger, J.P. Chapter 4 - Piping and Pipeline Sizing, Friction Losses, and Flow Calculations. In; Ellenberger, J.P.B.T.-P. and P.C.M. (Second E., Ed.; Butterworth-Heinemann: Boston, 2014; pp. 33–54 ISBN 978-0-12-416747-6.

Ghassemi, M.; Shahidian, A. Chapter 4 - Fluid Mechanics. In; Ghassemi, M., Shahidian, A.B.T.-N. and B.H.T. and F.F., Eds.; Academic Press: Oxford, 2017; pp. 57–87 ISBN 978-0-12-803779-9.

Shete, B.S.; Shinkar, N.P. Dairy Industry Wastewater Sources, Characteristics & Its Effects on Environment. Int. J. Curr. Eng. Technol. 2013, 3, 1611–1615.

Yu, H.; Huang, W.; Liu, H.; Liang, T.; Chi, N.; Chu, H.; Dong, B. Application of Coagulation–Membrane Rotation to Improve Ultrafiltration Performance in Drinking Water Treatment. Membranes (Basel). 2021, 11, 643, doi:10.3390/membranes11080643.

Igder, A.; Cai, W.; Luo, X.; Al‐Antaki, A.H.M.; Vimalanathan, K.; Keshavarz, A.; Nosrati, A.; Raston, C.L. Vortex-Fluidic-Mediated Fabrication of Polysulfone Ultrafiltration Membranes Incorporating Graphene Oxide. Acs Appl. Polym. Mater. 2022, 4, 4131–4143, doi:10.1021/acsapm.2c00109.

Takata, K.; Tanida, K. Effect of UF Membrane Rotation on Filtration Performance Using High Concentration Latex Emulsion Solution. Membranes (Basel). 2022, 12, 422, doi:10.3390/membranes12040422.

Lemmer, B.; Jákói, Z.; Gulyás, N.; Kertész, S.; Beszédes, S.; László, Z.; Hodúr, C. The Effect of Sonication and Stirring on Ultrafiltration of Fermentation Broth. Environ. Prot. Eng. 2020, 46.

Cassano, A.; Conidi, C.; Tasselli, F. Clarification of Pomegranate Juice (Punica Granatum L.) by Hollow Fibre Membranes: Analyses of Membrane Fouling and Performance. J. Chem. Technol. Biotechnol. 2014, 90, 859–866, doi:10.1002/jctb.4381.

Downloads

Published

2025-05-19

How to Cite

Altayawi, A., Csott, H., Horváth Hovorka, Z., Hatos, I., László, Z., Veréb, G., Nikola, M., Šereš, Z., & Kertész, S. (2025). Optimization of Operational Parameters to Enhance Ultrafiltration Efficiency Using Dairy Wastewater Model. Analecta Technica Szegedinensia, 19(1), 45–58. https://doi.org/10.14232/analecta.2025.1.45-58

Issue

Section

Articles

Funding data

Most read articles by the same author(s)

<< < 1 2