Analog and digital modeling of sound and impaired periodontal supporting tissues during mechanical testing




analog and digital modelling, periodontally compromised teeth, molar tooth, furcation involvement, finite element analysis


Periodontitis is one of the most common conditions affecting oral health among adults, posing a great challenge for both patients and also for dentists aiming to treat this disease. In severe stages such deterioration of the supporting tissues, namely the periodontal ligaments and the bone, can occur, which will affect the biomechanical behavior and therefore the longevity and survival of the affected teeth. In order to be able to plan both periodontal and subsequent restorative treatment properly, valid modelling of the current clinical situation is advised. The aim of the present article is to comprehensively discuss possible analog and digital modeling methods of periodontally affected teeth and the periodontal structures surrounding them. Modelling possibilities can serve later as the basis of mechanical load, digital finite element studies, and also aid clinical treatment planning.


Download data is not yet available.


Eke P. I., Wei L., Borgnakke W. S., Thornton-Evans G., Zhang X., Lu H., McGuire L. C., Genco R. J. (2016): Periodontitis prevalence in adults ≥ 65 years of age, in the USA. Periodontol 2000. 2016 Oct;72(1):76-95.

Eke P. I., Dye B. A., Wei L., Slade G. D., Thornton-Evans G. O., Borgnakke W. S., Taylor G. W., Page R. C., Beck J. D., Genco R. J. (2015): Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015 May;86(5):611-22.

Albandar J. M. (1990): A 6-year study on the pattern of periodontal disease progression. J Clin Periodontol. 1990 Aug;17(7 Pt 1):467-71.

Albandar J. M., Rise J., Gjermo P., Johansen J. R. (1986): Radiographic quantification of alveolar bone level changes. A 2-year longitudinal study in man. J Clin Periodontol. 1986 Mar;13(3):195-200.

American Academy of Periodontology. Glossary of Periodontal Terms. 4th ed. American Academy of Periodontology; Chicago, LA, USA: 2001. [(accessed on 2 November 2017)].

Lindhe J., Socransky S. S., Nyman S., Haffajee A., Westfelt E. (1982): "Critical probing depths" in periodontal therapy. J Clin Periodontol. 1982 Jul;9(4):323-36.

Palkovics D., Mangano F. G., Nagy K., Windisch P. (2020): Digital three-dimensional visualization of intrabony periodontal defects for regenerative surgical treatment planning. BMC Oral Health. 2020 Dec 1;20(1):351.

Palkovics D., Solyom E., Molnar B., Pinter C., Windisch P. (2021): Digital Hybrid Model Preparation for Virtual Planning of Reconstructive Dentoalveolar Surgical Procedures. J Vis Exp. 2021 Aug 5;(174).

Fráter M, Forster A, Keresztúri M, Braunitzer G, Nagy K. In vitro fracture resistance of molar teeth restored with a short fibre-reinforced composite material. J Dent. 2014 Sep;42(9):1143-50.

Forster A, Braunitzer G, Tóth M, Szabó BP, Fráter M. In Vitro Fracture Resistance of Adhesively Restored Molar Teeth with Different MOD Cavity Dimensions. J Prosthodont. 2019 Jan;28(1):e325-e331.

Sáry T, Garoushi S, Braunitzer G, Alleman D, Volom A, Fráter M. Fracture behaviour of MOD restorations reinforced by various fibre-reinforced techniques - An in vitro study. J Mech Behav Biomed Mater. 2019 Oct;98:348-356. Epub 2019 Jul 9. Erratum in: J Mech Behav Biomed Mater. 2020 Feb;102:103505.

Fráter M, Sáry T, Vincze-Bandi E, Volom A, Braunitzer G, Szabó P B, Garoushi S, Forster A. Fracture Behavior of Short Fiber-Reinforced Direct Restorations in Large MOD Cavities. Polymers (Basel). 2021 Jun 23;13(13):2040.

Fráter M, Lassila L, Braunitzer G, Vallittu PK, Garoushi S. Fracture resistance and marginal gap formation of post-core restorations: influence of different fiber-reinforced composites. Clin Oral Investig. 2020 Jan;24(1):265-276. Epub 2019 May 16. Erratum in: Clin Oral Investig. 2021 May;25(5):3339-3340.

Fráter M, Sáry T, Jókai B, Braunitzer G, Säilynoja E, Vallittu PK, Lassila L, Garoushi S. Fatigue behavior of endodontically treated premolars restored with different fiber-reinforced designs. Dent Mater. 2021 Mar;37(3):391-402.

Szabó P. B., Sáry T., Szabó B. (2019). The key elements of conducting load-to-fracture mechanical testing on restoration-tooth units in restorative dentistry. Analecta Technica Szegedinensia. 13. 59-64.

Szabó B, Eördegh G, Szabó PB, Fráter M. In vitro fracture resistance of root amputated molar teeth restored with overlay: a pilot study. Fogorv Szle. 2017:111-116.

Szabó B, Garoushi S, Braunitzer G, Szabó P B, Baráth Z, Fráter M. Fracture behavior of root-amputated teeth at different amount of periodontal support – a preliminary in vitro study. BMC Oral Health. 2019 Nov 27;19(1):261.

Fráter M, Sáry T, Néma V, Braunitzer G, Vallittu P, Lassila L, Garoushi S. Fatigue failure load of immature anterior teeth: influence of different fiber post-core systems. Odontology. 2021 Jan;109(1):222-230.

Fráter M, Sáry T, Braunitzer G, Balázs Szabó P, Lassila L, Vallittu PK, Garoushi S. Fatigue failure of anterior teeth without ferrule restored with individualized fiber-reinforced post-core foundations. J Mech Behav Biomed Mater. 2021 Jun;118:104440.




How to Cite

Szabó, V. T., Szabó, B., Tarjányi, T., Szőke-Trenyik, E., Szabó, B. P., & Fráter, M. (2021). Analog and digital modeling of sound and impaired periodontal supporting tissues during mechanical testing. Analecta Technica Szegedinensia, 15(2), 84–97.




Most read articles by the same author(s)